Warning message

Member access has been temporarily disabled. Please try again later.
The CAMP2Ex website is undergoing a major upgrade that began Friday, October 11th at 5:00 PM PDT. The new upgraded site will be available no later than Monday, October 21st. Until that time, the current site will be visible but logins are disabled.

Observations of cyanogen bromide (BrCN) in the global troposphere and their...

Roberts, J., S. Wang, P. Veres, J. A. Neuman, M. Robinson, I. Bourgeois, J. Peischl, T. B. Ryerson, C. Thompson, and H. Allen (2023), Observations of cyanogen bromide (BrCN) in the global troposphere and their relation to polar surface O3 destruction., doi:10.5194/egusphere-2023-860 (submitted).
Abstract: 

Active bromine (e.g., Br2, BrCl, BrO, HOBr) promotes atmospheric ozone destruction and mercury removal. Here we report a previously unidentified participant in active-Br chemistry, cyanogen bromide (BrCN), measured during the NASA Atmospheric Tomography (ATom) mission. BrCN was confined to polar boundary layers, often appearing at concentrations higher than other Br compounds. The chemistry of BrCN determines whether it promotes or inhibits ozone and mercury removal. This dataset provides evidence that much of the BrCN was from atmospheric Br chemistry involving surface reactions with reduced nitrogen compounds. Since gas phase loss processes are known to be relatively slow, surface reactions must also be the major loss processes, with vertical profiles implying a BrCN atmospheric lifetime in the range 1–10 days. Liquid phase reactions of BrCN tend to convert Br to bromide (Br¯) or C-Br bonded organics, constituting a loss of active Br. Thus, accounting for BrCN chemistry is crucial to understanding polar Br cycling.

PDF of Publication: 
Download from publisher's website.
Mission: 
ATom