Disclaimer: This material is being kept online for historical purposes. Though accurate at the time of publication, it is no longer being updated. The page may contain broken links or outdated information, and parts may not function in current web browsers. Visit https://espo.nasa.gov for information about our current projects.

 

Vertical Moist Thermodynamic Structure of the Madden–Julian Oscillation in...

Tian, B., D. E. Waliser, E. J. Fetzer, and Y. L. Yung (2010), Vertical Moist Thermodynamic Structure of the Madden–Julian Oscillation in Atmospheric Infrared Sounder Retrievals: An Update and a Comparison to ECMWF Interim Re-Analysis, Mon. Wea. Rev., 138, 4576-4582, doi:10.1175/2010MWR3486.1.
Abstract: 

The large-scale vertical moist thermodynamic structure of the Madden–Julian oscillation (MJO) was documented using the first 2.5 yr (2002–05) of version 4 atmospheric specific humidity and temperature profiles from the Atmospheric Infrared Sounder (AIRS). In this study, this issue is further examined using currently available 7-yr version 5 AIRS data (2002–09) to test its dependence on the AIRS data record lengths, AIRS retrieval versions, and MJO event selection and compositing methods employed. The results indicate a strong consistency of the large-scale vertical moist thermodynamic structure of the MJO between different AIRS data record lengths (2.5 vs 7 yr), different AIRS retrieval versions (4 vs 5), and different MJO analysis methods [the extended empirical orthogonal function (EEOF) method vs the multivariate empirical orthogonal function (MEOF) method].

The large-scale vertical moist thermodynamic structures of the MJO between the AIRS retrievals and the ECMWF Interim Re-Analysis (ERA-Interim) products are also compared. The results indicate a much better agreement of the MJO vertical structure between AIRS and ERA-Interim than with the NCEP–NCAR reanalysis, although a significant difference exists in the magnitude of moisture anomalies between ERAInterim and AIRS. This characterization of the vertical moist thermodynamic structure of the MJO by AIRS and ERA-Interim offers a useful observation-based metric for general circulation model diagnostics.

PDF of Publication: 
Download from publisher's website.
Research Program: 
Modeling Analysis and Prediction Program (MAP)
Energy & Water Cycle Program (EWCP)
Climate Variability and Change Program
Atmospheric Dynamics and Precipitation Program (ADP)
Mission: 
AQUA-AIRS
Funding Sources: 
AIRS