Disclaimer: This material is being kept online for historical purposes. Though accurate at the time of publication, it is no longer being updated. The page may contain broken links or outdated information, and parts may not function in current web browsers. Visit https://espo.nasa.gov for information about our current projects.

 

Cloud adjustments from large-scale smoke–circulation interactions strongly...

Diamond, M., Saide Peralta, P. Zuidema, A. S. Ackerman, S. Doherty, A. M. Fridlind, H. Gordon, C. Howes, J. Kazil, T. Yamaguchi, J. Zhang, G. Feingold, and R. Wood (2023), Cloud adjustments from large-scale smoke–circulation interactions strongly modulate the southeastern Atlantic stratocumulus-to-cumulus transition, Atmos. Chem. Phys., doi:10.5194/acp-22-12113-2022.
Abstract: 

Smoke from southern Africa blankets the southeastern Atlantic Ocean from June to October, producing strong and competing aerosol radiative effects. Smoke effects on the transition between overcast stratocumulus and scattered cumulus clouds are investigated along a Lagrangian (air-mass-following) trajectory in regional climate and large eddy simulation models. Results are compared with observations from three recent field campaigns that took place in August 2017: ObseRvations of Aerosols above CLouds and their intEractionS (ORACLES), CLouds and Aerosol Radiative Impacts and Forcing: Year 2017 (CLARIFY), and Layered Atlantic Smoke Interactions with Clouds (LASIC). The case study is set up around the joint ORACLES–CLARIFY flight that took place near Ascension Island on 18 August 2017. Smoke sampled upstream on an ORACLES flight on 15 August 2017 likely entrained into the marine boundary layer later sampled during the joint flight.

The case is first simulated with the WRF-CAM5 regional climate model in three distinct setups: (1) FireOn, in which smoke emissions and any resulting smoke–cloud–radiation interactions are included; (2) FireOff, in which no smoke emissions are included; (3) RadOff, in which smoke emissions and their microphysical effects are included but aerosol does not interact directly with radiation. Over the course of the Lagrangian trajectory, differences in free tropospheric thermodynamic properties between FireOn and FireOff are nearly identical to those between FireOn and RadOff, showing that aerosol–radiation interactions are primarily responsible for the free tropospheric effects. These effects are non-intuitive: in addition to the expected heating within the core of the smoke plume, there is also a “banding” effect of cooler temperature (∼ 1–2 K) and greatly enhanced moisture (> 2 g kg−1 ) at the plume top. This banding effect is caused by a vertical displacement of the former continental boundary layer in the free troposphere in the FireOn simulation resulting from anomalous diabatic heating due to smoke absorption of sunlight that manifests primarily as a few hundred meters per day reduction in large-scale subsidence over the ocean.

PDF of Publication: 
Download from publisher's website.
Research Program: 
Radiation Science Program (RSP)
Mission: 
ORACLES
Funding Sources: 
EVS-2