Disclaimer: This material is being kept online for historical purposes. Though accurate at the time of publication, it is no longer being updated. The page may contain broken links or outdated information, and parts may not function in current web browsers. Visit espo.nasa.gov for information about our current projects.

 

Radiative transfer theory verified by controlled laboratory experiments

Mishchenko, M., D. H. Goldstein, J. Chowdhary, and A. Lompado (2013), Radiative transfer theory verified by controlled laboratory experiments, Optics Letters, 38, 3522-3525.
Abstract: 

We report the results of high-accuracy controlled laboratory measurements of the Stokes reflection matrix for suspensions of submicrometer-sized latex particles in water and compare them with the results of a numerically exact computer solution of the vector radiative transfer equation (VRTE). The quantitative performance of the VRTE is monitored by increasing the volume packing density of the latex particles from 2% to 10%. Our results indicate that the VRTE can be applied safely to random particulate media with packing densities up to ∼2%. VRTE results for packing densities of the order of 5% should be taken with caution, whereas the polarized bidirectional reflectivity of suspensions with larger packing densities cannot be accurately predicted. We demonstrate that a simple modification of the phase matrix entering the VRTE based on the so-called static structure factor can be a promising remedy that deserves further examination.

Research Program: 
Radiation Science Program (RSP)