Multiple Scattering Effects in Pulsed Radar Systems: An Intercomparison Study

Battaglia, A., S. Kobayashi, S. Tanelli, C. Simmer, and E. Im (2008), Multiple Scattering Effects in Pulsed Radar Systems: An Intercomparison Study, J. Atmos. Oceanic Technol., 25, 1556-1567, doi:10.1175/2008JTECHA1023.1.
Abstract

In this paper, two different numerical methods capable of computing multiple scattering effects in pulsed-radar systems are compared. Both methods are based on the solution of the time-dependent vectorial form of the radiative transfer equation: one exploits the successive order of scattering approximation, the other a forward Monte Carlo technique.

Different benchmark results are presented (including layers of monodisperse spherical water and ice particles), which are of specific interest for W-band spaceborne cloud radars such as CloudSat’s or EarthCARE’s cloud profiling radars. Results demonstrate a good agreement between the two methods. The pros and cons of the two models are discussed, with a particular focus on the validity of the second order of scattering approximation.

PDF of Publication
Download from publisher's website
Research Program
Atmospheric Dynamics and Precipitation Program (ADP)
Mission
CloudSat

 

Disclaimer: This material is being kept online for historical purposes. Though accurate at the time of publication, it is no longer being updated. The page may contain broken links or outdated information, and parts may not function in current web browsers. Visit https://espo.nasa.gov for information about our current projects.