Warning message

Member access has been temporarily disabled. Please try again later.
The ARCTAS website is undergoing a major upgrade that began Friday, October 11th at 5:00 PM PDT. The new upgraded site will be available no later than Monday, October 21st. Until that time, the current site will be visible but logins are disabled.

 

Disclaimer: This material is being kept online for historical purposes. Though accurate at the time of publication, it is no longer being updated. The page may contain broken links or outdated information, and parts may not function in current web browsers. Visit https://espo.nasa.gov for information about our current projects.

 

Increase in CFC-11 emissions from eastern China based on atmospheric...

Rigby, M., S. Park, T. Saito, L. Western, A. L. Redington, X. Fang, S. Henne, A. Manning, R. G. Prinn, G. S. Dutton, P. Fraser, A. L. Ganesan, B. D. Hall, C. M. Harth, J. Kim, K.-R. Kim, P. B. Krummel, T. Lee, S. Li, Q. Liang, M. F. Lunt, S. A. Montzka, J. Muhle, S. O’Doherty, M.-K. Park, S. Reimann, P. K. Salameh, P. Simmonds, R. L. Tunnicliffe, R. Weiss, Y. Yokouchi, and D. Young (2019), Increase in CFC-11 emissions from eastern China based on atmospheric observations, Nature, doi:10.1038/s41586-019-1193-4.
Abstract: 

The recovery of the stratospheric ozone layer relies on the continued decline in the atmospheric concentrations of ozone-depleting gases such as chlorofluorocarbons1. The atmospheric concentration of trichlorofluoromethane (CFC-11), the second-most abundant chlorofluorocarbon, has declined substantially since the mid-1990s2. A recently reported slowdown in the decline of the atmospheric concentration of CFC-11 after 2012, however, suggests that global emissions have increased3,4. A concurrent increase in CFC-11 emissions from eastern Asia contributes to the global emission increase, but the location and magnitude of this regional source are unknown3. Here, using high-frequency atmospheric observations from Gosan, South Korea, and Hateruma, Japan, together with global monitoring data and atmospheric chemical transport model simulations, we investigate regional CFC-11 emissions from eastern Asia. We show that emissions from eastern mainland China are 7.0 ± 3.0 (±1 standard deviation) gigagrams per year higher in 2014–2017 than in 2008–2012, and that the increase in emissions arises primarily around the northeastern provinces of Shandong and Hebei. This increase accounts for a substantial fraction (at least 40 to 60 per cent) of the global rise in CFC-11 emissions. We find no evidence for a significant increase in CFC-11 emissions from any other eastern Asian countries or other regions of the world where there are available data for the detection of regional emissions. The attribution of any remaining fraction of the global CFC-11 emission rise to other regions is limited by the sparsity of long-term measurements of sufficient frequency near potentially emissive regions. Several considerations suggest that the increase in CFC-11 emissions from eastern mainland China is likely to be the result of new production and use, which is inconsistent with the Montreal Protocol agreement to phase out global chlorofluorocarbon production by 2010.

PDF of Publication: 
Download from publisher's website.
Research Program: 
Modeling Analysis and Prediction Program (MAP)
Atmospheric Composition
Atmospheric Composition Modeling and Analysis Program (ACMAP)
Upper Atmosphere Research Program (UARP)