Disclaimer: This material is being kept online for historical purposes. Though accurate at the time of publication, it is no longer being updated. The page may contain broken links or outdated information, and parts may not function in current web browsers. Visit https://espo.nasa.gov for information about our current projects.


A Multi-Parameter Aerosol Classification Method and its Application to...

Russell, P. B., M. S. Kacenelenbogen, J. M. Livingston, Hasekamp, S. Burton, G. Schuster, M. S. Johnson, K. Knobelspiesse, J. Redemann, S. Ramchandran, and B. Holben (2014), A Multi-Parameter Aerosol Classification Method and its Application to Retrievals from Spaceborne Polarimetry, Paper #: 2013JD021411R, J. Geophys. Res..

Classifying observed aerosols into types (e.g., urban-industrial, biomass burning, mineral dust, maritime) helps to understand aerosol sources, transformations, effects, and feedback mechanisms; to improve accuracy of satellite retrievals; and to quantify aerosol radiative impacts on climate. The number of aerosol parameters retrieved from spaceborne sensors has been growing, from the initial aerosol optical depth (AOD) at one or a few wavelengths to a list that now includes AOD, complex refractive index, single scattering albedo (SSA), and depolarization of backscatter, each at several wavelengths, plus several particle size and shape parameters. Making optimal use of these varied data products requires objective, multidimensional analysis methods. We describe such a method, which makes explicit use of uncertainties in input parameters. It treats an N-parameter retrieved data point and its N-dimensional uncertainty as an extended data point, E. It then uses a modified Mahalanobis distance, DEC, to assign an observation to the class (cluster) C that has minimum DEC from the point. We use parameters retrieved from the Aerosol Robotic Network (AERONET) to define seven prespecified clusters (pure dust, polluted dust, urban-industrial/developed economy, urban-industrial/developing economy, dark biomass smoke, light biomass smoke, and pure marine), and we demonstrate application of the method to a 5 year record of retrievals from the spaceborne Polarization and Directionality of the Earth’s Reflectances 3 (POLDER 3) polarimeter over the island of Crete, Greece. Results show changes of aerosol type at this location in the eastern Mediterranean Sea, which is influenced by a wide variety of aerosol sources.

Research Program: 
Applied Sciences Program (ASP)
Atmospheric Composition Modeling and Analysis Program (ACMAP)