Disclaimer: This material is being kept online for historical purposes. Though accurate at the time of publication, it is no longer being updated. The page may contain broken links or outdated information, and parts may not function in current web browsers. Visit https://espo.nasa.gov for information about our current projects.


Sensitivity of stratospheric inorganic chlorine to differences in transport

Waugh, D., S. Strahan, and P. Newman (2007), Sensitivity of stratospheric inorganic chlorine to differences in transport, Atmos. Chem. Phys., 7, 4935-4941, doi:10.5194/acp-7-4935-2007.

Correctly modeling stratospheric inorganic chlorine (Cly ) is crucial for modeling the past and future evolution of stratospheric ozone. However, comparisons of the chemistry climate models used in the latest international assessment of stratospheric ozone depletion have shown large differences in the modeled Cly , with these differences explaining many of the differences in the simulated evolution of ozone over the next century. Here in, we examine the role of transport in determining the simulated Cly using three simulations from the same off-line chemical transport model that have the same lower tropospheric boundary conditions and the same chemical solver, but differing resolution and/or meteorological fields. These simulations show that transport plays a key role in determining the Cly distribution, and that Cly depends on both the time scales and pathways of transport. The time air spends in the stratosphere (e.g., the mean age) is an important transport factor determining stratospheric Cly , but the relationship between mean age and Cly is not simple. Lower stratospheric Cly depends on the fraction of air that has been in the upper stratosphere, and transport differences between models having the same mean age can result in differences in the fraction of organic chlorine converted into Cly . Differences in transport pathways result in differences in vertical profiles of CFCs, and comparisons of observed and modeled CFC profiles provide a stringent test of transport pathways in models.

PDF of Publication: 
Download from publisher's website.
Research Program: 
Modeling Analysis and Prediction Program (MAP)