Warning message

Member access has been temporarily disabled. Please try again later.
The SPADE website is undergoing a major upgrade that began Friday, October 11th at 5:00 PM PDT. The new upgraded site will be available no later than Monday, October 21st. Until that time, the current site will be visible but logins are disabled.

 

Disclaimer: This material is being kept online for historical purposes. Though accurate at the time of publication, it is no longer being updated. The page may contain broken links or outdated information, and parts may not function in current web browsers. Visit https://espo.nasa.gov for information about our current projects.

 

Impact of tropospheric nitrogen dioxide on the regional radiation budget

Vasilkov, A. P., J. Joiner, L. Oreopoulos, J. Gleason, J. P. Veefkind, E. J. Bucsela, E. A. Celarier, R. J. D. Spurr, and S. Platnick (2009), Impact of tropospheric nitrogen dioxide on the regional radiation budget, Atmos. Chem. Phys., 9, 6389-6400, doi:10.5194/acp-9-6389-2009.
Abstract: 

Following the launch of several satellite ultraviolet and visible spectrometers including the Ozone Monitoring Instrument (OMI), much has been learned about the global distribution of nitrogen dioxide (NO2 ). NO2 , which is mostly anthropogenic in origin, absorbs solar radiation at ultraviolet and visible wavelengths. We parameterized NO2 absorption for fast radiative transfer calculations. Using this parameterization with cloud, surface, and NO2 information from different sensors in the NASA A-train constellation of satellites and NO2 profiles from the Global Modeling Initiative (GMI), we compute the global distribution of net atmospheric heating (NAH) due to tropospheric NO2 for January and July 2005. The globally-averaged NAH values due to tropospheric NO2 are very low: they are about 0.05 W/m2 . While the impact of NO2 on the global radiative forcing is small, locally it can produce instantaneous net atmospheric heating of 2–4 W/m2 in heavily polluted areas. We assess the impact of clouds and find that they reduce the globallyaveraged NAH values by 5–6% only. However, because most of NO2 is contained in the boundary layer in polluted regions, the cloud shielding effect can significantly reduce the net atmospheric heating due to tropospheric NO2 (up to 50%). We examine the effect of diurnal variations in NO2 emissions and chemistry on net atmospheric heating and find only a small impact of these on the daily-averaged heating (11–14% at the most). We also examine the sensitivity of NO2 absorption to various geophysical conditions. Effects of the vertical distributions of cloud optical depth and NO2 on net atmospheric heating and downwelling radiance are simulated in detail for various scenarios including vertically-inhomogeneous convective clouds observed by CloudSat. The maximum effect of NO2 on downwelling radiance occurs when the NO2 is located in the middle part of the cloud where the optical extinction peaks.

PDF of Publication: 
Download from publisher's website.
Mission: 
Aura- OMI