Organization
NOAA Chemical Sciences Laboratory
Email
Business Phone
Work
(303) 578-0595
Mobile
(303) 506-1892
Fax
(303) 497-5373
Business Address
NOAA ESRL Chemical Sciences Division
325 Broadway, R/CSL6
Boulder, CO 80305
United States
Website
First Author Publications
-
Schwarz, J., and J. Katich (2019), ATom: L2 In Situ Measurements from Single Particle Soot Photometer (SP2), Ornl Daac, doi:10.3334/ORNLDAAC/1672.
-
Schwarz, J., et al. (2017), Aircraft measurements of black carbon vertical profiles show upper tropospheric variability and stability, Geophys. Res. Lett., 44, doi:10.1002/2016GL071241.
-
Schwarz, J., et al. (2015), Technique and theoretical approach for quantifying the hygroscopicity of black-carbon-containing aerosol using a single particle soot photometer, Journal of Aerosol Science, 81, 110-126.
-
Schwarz, J., et al. (2013), Black carbon aerosol size in snow, SCIENTIFIC REPORTS, 3, 1356-1460, doi:10.1038/srep01356.
-
Schwarz, J., et al. (2012), Assessing Single Particle Soot Photometer and Integrating Sphere/Integrating Sandwich Spectrophotometer measurement techniques for quantifying black carbon concentration in snow, Atmos. Meas. Tech., 5, 2581-2592, doi:10.5194/amt-5-2581-2012.
-
Schwarz, J., et al. (2010), Global‐scale black carbon profiles observed in the remote atmosphere and compared to models, Geophys. Res. Lett., 37, L18812, doi:10.1029/2010GL044372.
-
Schwarz, J., et al. (2010), The Detection Efficiency of the Single Particle Soot Photometer, Aerosol Sci. Tech., 44, 612-628, doi:10.1080/02786826.2010.481298.
-
Schwarz, J., et al. (2009), Heating rates and surface dimming due to black carbon aerosol absorption associated with a major U.S. city, Geophys. Res. Lett., 36, L15807, doi:10.1029/2009GL039213.
-
Schwarz, J., et al. (2008), Coatings and their enhancement of black carbon light absorption in the tropical atmosphere, J. Geophys. Res., 113, D03203, doi:10.1029/2007JD009042.
-
Schwarz, J., et al. (2006), Single-particle measurements of midlatitude black carbon and light-scattering aerosols from the boundary layer to the lower stratosphere, J. Geophys. Res., 111, D16207, doi:10.1029/2006JD007076.
Note: Only publications that have been uploaded to the ESD Publications database are listed here.
Co-Authored Publications
-
Gkatzelis, G., et al. (2024), Parameterizations of US wildfire and prescribed fire emission ratios and emission factors based on FIREX-AQ aircraft measurements, Atmos. Chem. Phys., doi:10.5194/acp-24-929-2024.
-
Gkatzelis, G., et al. (2024), Parameterizations of US wildfire and prescribed fire emission ratios and emission factors based on FIREX-AQ aircraft measurements, Atmos. Chem. Phys., doi:10.5194/acp-24-929-2024.
-
Zhang, J., et al. (2024), Stratospheric air intrusions promote global-scale new particle formation.Science, Wang, 385, 210-216, doi:10.1126/science.adn2961.
-
Katich, J., et al. (2023), Pyrocumulonimbus affect average stratospheric aerosol composition, Science, 379, 815-820, doi:10.1126/science.add3101.
-
Khan, A.L., et al. (2023), Black carbon concentrations and modeled smoke deposition fluxes to the bare-ice dark zone of the Greenland Ice Sheet, The Cryosphere, 17, 2909-2918, doi:10.5194/tc-17-2909-2023.
-
Kumar, A., et al. (2023), Simulating wildfire emissions and plume rise using geostationary satellite fire radiative power measurements: a case study of the 2019 Williams Flats fire, Atmos. Chem. Phys., doi:10.5194/acp-22-10195-2022.
-
Saide Peralta, P., et al. (2023), Understanding the Evolution of Smoke Mass Extinction Efficiency Using Field Campaign Measurements, Geophys. Res. Lett., 49, e2022GL099175, doi:10.1029/2022GL099175.
-
Tang, Y., et al. (2023), Evaluation of the NAQFC driven by the NOAA Global Forecast System (version 16): comparison with the WRF-CMAQ during the summer 2019 FIREX-AQ campaign, Geosci. Model. Dev., doi:10.5194/gmd-15-7977-2022.
-
Warneke, C., et al. (2023), Fire Influence on Regional to Global Environments and Air Quality (FIREX-AQ), J. Geophys. Res., 128, e2022JD037758, doi:10.1029/2022JD037758.
-
Zhu, H., et al. (2023), Parameterization of size of organic and secondary inorganic aerosol for efficient representation of global aerosol optical properties, Atmos. Chem. Phys., doi:10.5194/acp-23-5023-2023.
-
Adachi, K., et al. (2022), Fine ash-bearing particles as a major aerosol component in biomass burning smoke, J. Geophys. Res., 127, e2021JD035657, doi:10.1029/2021JD035657.
-
Kacenelenbogen, M.S., et al. (2022), Identifying chemical aerosol signatures using optical suborbital observations: how much can optical properties tell us about aerosol composition?, Atmos. Chem. Phys., doi:10.5194/acp-22-3713-2022.
-
Liu, M., et al. (2022), The underappreciated role of anthropogenic sources in atmospheric soluble iron flux to the Southern Ocean, NPJ Climate and Atmospheric Science, 5(1), doi:10.1038/s41612-022-00250-w.
-
Saide Peralta, P., et al. (2022), Understanding the Evolution of Smoke Mass Extinction Efficiency Using Field Campaign Measurements, Geophys. Res. Lett., 49, e2022GL099175, doi:10.1029/2022GL099175.
-
Zeng, L., et al. (2022), Characteristics and evolution of brown carbon in western United States wildfires, Atmos. Chem. Phys., doi:10.5194/acp-22-8009-2022.
-
Zeng, L., et al. (2022), Characteristics and evolution of brown carbon in western United States wildfires, Atmos. Chem. Phys., doi:10.5194/acp-22-8009-2022.
-
Brock, C., et al. (2021), Ambient aerosol properties in the remote atmosphere from global-scale in situ measurements, Atmos. Chem. Phys., 21, 15023-15063, doi:10.5194/acp-21-15023-2021.
-
Chen, X., et al. (2021), HCOOH in the Remote Atmosphere: Constraints from Atmospheric Tomography (ATom) Airborne Observations, ACS Earth Space Chem., doi:10.1021/acsearthspacechem.1c00049.
-
Lamb, K., et al. (2021), Global-scale constraints on light-absorbing anthropogenic iron oxide aerosols, Nature, doi:10.1038/s41612-021-00171-0.
-
Thompson, C., et al. (2021), The NASA Atmospheric Tomography (ATom) Mission: Imaging the Chemistry of the Global Atmosphere, Bull. Am. Meteorol. Soc., doi:10.1175/BAMS-D-20-0315.1.
-
Wiggins, E.B., et al. (2021), Reconciling assumptions in bottom-up and top-down approaches for estimating aerosol emission rates from wildland fires using observations from FIREX-AQ, J. Geophys. Res., 126, e2021JD035692, doi:10.1029/2021JD035692.
-
Carter, T.S., et al. (2020), How emissions uncertainty influences the distribution and radiative impacts of smoke from fires in North America, Atmos. Chem. Phys., 20, 2073-2097, doi:10.5194/acp-20-2073-2020.
-
Choi, Y., et al. (2020), Temporal and spatial variations of aerosol optical properties over the Korean peninsula during KORUS-AQ, in review, Atmos. Environ..
-
Hodzic, A.H., et al. (2020), Characterization of organic aerosol across the global remote troposphere: a comparison of ATom measurements and global chemistry models, Atmos. Chem. Phys., 20, 4607-4635, doi:10.5194/acp-20-4607-2020.
-
Saide Peralta, P., et al. (2020), Understanding and improving model representation of aerosol optical properties for a Chinese haze event measured during KORUS-AQ, Atmos. Chem. Phys., 20, 6455-6478, doi:10.5194/acp-20-6455-2020.
-
Zeng, L., et al. (2020), Global Measurements of Brown Carbon and Estimated Direct Radiative Effects, Geophys. Res. Lett., 47, doi:10.1029/2020GL088747.
-
Brock, C., et al. (2019), Aerosol size distributions during the Atmospheric Tomography Mission (ATom): methods, uncertainties, and data products, Atmos. Meas. Tech., 12, 3081-3099, doi:10.5194/amt-12-3081-2019.
-
Lund, M.T., et al. (2019), Short Black Carbon lifetime inferred from a global set of aircraft observations, Nature Clim Atmos Sci, doi:10.1038/s41612-018-0040-x.
-
Ullrich, R., et al. (2019), Comparison of Modeled and Measured Ice Nucleating Particle Composition in a Cirrus Cloud, J. Atmos. Sci., 76, 1015-1029, doi:10.1175/JAS-D-18-0034.1.
-
Yu, P., et al. (2019), Efficient In‐Cloud Removal of Aerosols by Deep Convection, Geophys. Res. Lett., 46, 1061-1069, doi:10.1029/2018GL080544.
-
Ditas, J., et al. (2018), Strong impact of wildfires on the abundance and aging of black carbon in the lowermost stratosphere, Proc. Natl. Acad. Sci., 811595-11603, doi:10.1073/pnas.1806868115.
-
Katich, J., et al. (2018), ATom: Black Carbon Mass Mixing Ratios from ATom-1 Flights, Ornl Daac, doi:10.3334/ORNLDAAC/1618.
-
Katich, J., et al. (2018), Strong Contrast in Remote Black Carbon Aerosol Loadings Between the Atlantic and Pacific Basins, J. Geophys. Res., 123, 13,386-13,395, doi:10.1029/2018JD029206.
-
Lamb, K., et al. (2018), Estimating Source Region Influences on Black Carbon Abundance, Microphysics, and Radiative Effect Observed Over South Korea, J. Geophys. Res., 123, 13,527-13,548, doi:10.1029/2018JD029257.
-
Wang, X., et al. (2018), Exploring the observational constraints on the simulation of brown carbon, Atmos. Chem. Phys., 18, 635-653, doi:10.5194/acp-18-635-2018.
-
Wofsy, S.C., et al. (2018), ATom: Merged Atmospheric Chemistry, Trace Gases, and Aerosols, Ornl Daac, doi:10.3334/ORNLDAAC/1581.
-
Perring, A., et al. (2017), In situ measurements of water uptake by black carbon-containing aerosol in wildfire plumes, J. Geophys. Res., 122, 1086-1097, doi:10.1002/2016JD025688.
-
Zhang, Y., et al. (2017), Top-of-atmosphere radiative forcing affected by brown carbon in the upper troposphere, Nature Geoscience, 10, 486, doi:10.1038/NGEO2960.
-
Brock, C., et al. (2016), Aerosol optical properties in the southeastern United States in summer – Part 2: Sensitivity of aerosol optical depth to relative humidity and aerosol parameters, Atmos. Chem. Phys., 16, 5009-5019, doi:10.5194/acp-16-5009-2016.
-
Brock, C., et al. (2016), Aerosol optical properties in the southeastern United States in summer – Part 1: Hygroscopic growth, Atmos. Chem. Phys., 16, 4987-5007, doi:10.5194/acp-16-4987-2016.
-
Kremser, S., et al. (2016), Stratospheric aerosol—Observations, processes, and impact on climate, Rev. Geophys., 54, doi:10.1002/2015RG000511.
-
Liu, X., et al. (2016), Agricultural fires in the southeastern U.S. during SEAC4RS: Emissions of trace gases and particles and evolution of ozone, reactive nitrogen, and organic aerosol, J. Geophys. Res., 121, 7383-7414, doi:10.1002/2016JD025040.
-
Shingler, T., et al. (2016), Airborne characterization of subsaturated aerosol hygroscopicity and dry refractive index from the surface to 6.5km during the SEAC4RS campaign, J. Geophys. Res., 121, 4188-4210, doi:10.1002/2015JD024498.
-
Yu, P., et al. (2016), Surface dimming by the 2013 Rim Fire simulated by a sectional aerosol model, J. Geophys. Res., 121, 7079-7087, doi:10.1002/2015JD024702.
-
Forrister, H., et al. (2015), Evolution of brown carbon in wildfire plumes, Geophys. Res. Lett., 42, 4623-4630, doi:10.1002/2015GL063897.
-
Kim, P., et al. (2015), Sources, seasonality, and trends of southeast US aerosol: an integrated analysis of surface, aircraft, and satellite observations with the GEOS-Chem chemical transport model, Atmos. Chem. Phys., 15, 10411-10433, doi:10.5194/acp-15-10411-2015.
-
Liu, J., et al. (2015), Brown carbon aerosol in the North American continental troposphere: sources, abundance, and radiative forcing, Atmos. Chem. Phys., 15, 7841-7858, doi:10.5194/acp-15-7841-2015.
-
Saide Peralta, P., et al. (2015), Revealing important nocturnal and day-to-day variations in fire smoke emissions through a multiplatform inversion, Geophys. Res. Lett., 42, 3609-3618, doi:10.1002/2015GL063737.
-
Wagner, N.L., et al. (2015), In situ vertical profiles of aerosol extinction, mass, and composition over the southeast United States during SENEX and SEAC4RS: observations of a modest aerosol enhancement aloft, Atmos. Chem. Phys., 15, 7085-7102, doi:10.5194/acp-15-7085-2015.
-
Murphy, D., et al. (2014), Observations of the chemical composition of stratospheric aerosol particles, Q. J. R. Meteorol. Soc., 140, 1269-1278, doi:10.1002/qj.2213.
-
Samset, B.H., et al. (2014), Modelled black carbon radiative forcing and atmospheric lifetime in AeroCom Phase II constrained by aircraft observations, Atmos. Chem. Phys., 14, 12465-12477, doi:10.5194/acp-14-12465-2014.
-
Bond, T.C., et al. (2013), Bounding the role of black carbon in the climate system: A scientific assessment, J. Geophys. Res., 118, 5380-5552, doi:10.1002/jgrd.50171.
-
Gao, R., et al. (2013), A High-Sensitivity Low-Cost Optical Particle Counter Design, Aerosol Science and Technology, 47, 137-145, doi:10.1080/02786826.2012.733039.
-
Perring, A., et al. (2013), Evaluation of a Perpendicular Inlet for Airborne Sampling of Interstitial Submicron Black-Carbon Aerosol, Aerosol Sci. Tech., 47, 1066-1072, doi:10.1080/02786826.2013.821196.
-
Brock, C., et al. (2011), Characteristics, sources, and transport of aerosols measured in spring 2008 during the aerosol, radiation, and cloud processes affecting Arctic Climate (ARCPAC) Project, Atmos. Chem. Phys., 11, 2423-2453, doi:10.5194/acp-11-2423-2011.
-
Huang, X.-F., et al. (2011), Black carbon measurements in the Pearl River Delta region of China, J. Geophys. Res., 116.
-
McHaughton, C.S., et al. (2011), Absorbing aerosols in the troposphere of the Western Arctic during the 2008 ACTAS/ARCPAC airborne field campaigns, Atmos. Chem. Phys., 11, 7561-7582, doi:10.5194/acp-11-7515-2011.
-
McNaughton, C.S., et al. (2011), Absorbing aerosol in the troposphere of the Western Arctic during the 2008 ARCTAS/ARCPAC airborne field campaigns, Atmos. Chem. Phys., 11, 7561-7582, doi:10.5194/acp-11-7561-2011.
-
Spackman, R., et al. (2011), Seasonal variability of black carbon mass in the tropical tropopause layer, Geophys. Res. Lett., 38, L09803, doi:10.1029/2010GL046343.
-
Wofsy, S.C., et al. (2011), HIAPER Pole-to-Pole Observations (HIPPO): Fine-grained, global scale measurements of climatically important atmospheric gases and aerosols, Philosophical Transactions of the Royal Society of London A, 369, 2073-2086, doi:10.1098/rsta.2010.0313.
-
Spackman, R., et al. (2010), Aircraft observations of enhancement and depletion of black carbon mass in the springtime Arctic, Atmos. Chem. Phys., 10, 9667-9680, doi:10.5194/acp-10-9667-2010.
-
Koch, D., et al. (2009), Evaluation of black carbon estimations in global aerosol models, Atmos. Chem. Phys., 9, 9001-9026, doi:10.5194/acp-9-9001-2009.
-
Myhre, G., et al. (2009), Modelled radiative forcing of the direct aerosol effect with multi-observation evaluation, Atmos. Chem. Phys., 9, 1365-1392, doi:10.5194/acp-9-1365-2009.
-
Gao, R., et al. (2008), Calculations of solar shortwave heating rates due to black carbon and ozone absorption using in situ measurements, J. Geophys. Res., 113, D14203, doi:10.1029/2007JD009358.
-
Gao, R., et al. (2008), Calculations of solar shortwave heating rates due to black carbon and ozone absorption using in situ measurements, J. Geophys. Res., 113, D14203, doi:10.1029/2007JD009358.
-
Spackman, R., et al. (2008), Empirical correlations between black carbon aerosol and carbon monoxide in the lower and middle troposphere, Geophys. Res. Lett., 35, L19816, doi:10.1029/2008GL035237.
-
Gao, R., et al. (2007), A Novel Method for Estimating Light-Scattering Properties of Soot Aerosols Using a Modified Single-Particle Soot Photometer, Aerosol Sci. Tech., 41, 125-135, doi:10.1080/02786820601118398.
Note: Only publications that have been uploaded to the ESD Publications database are listed here.