Organization
University of Pittsburgh
Email
Business Phone
(412) 624-8772
Business Address
University of Pittsburgh - Department of Geology
4107 O'Hara Street
room 200
PITTSBURGH, PA 15260
United States
Website
First Author Publications
-
Michael Ramsey, M.R.M.R., et al. (2024), Forecasting volcanic activity over the next decade: The plans for rapid-revisit orbital thermal infrared (TIR) data, Cities on Volcanoes 12, Feb. 12-16, Antigua, Guatemala.
-
Michael Ramsey, M.R.M.R., et al. (2024), What we need in thermal infrared (TIR) data to forecast volcanic activity: From new ground-based sensors to a rapid-revisit orbital concept, European Geophysical Union General Assembly, Apr. 15-19, Vienna, Austria.
-
Michael Ramsey, M.R.M.R., and J. Thompson (2024), The SBG Level 3 TIR Surface Minerology (SM) Product, Surface Biology and Geology Technical Interchange Meeting, May. 29-31, Washington, DC.
-
Michael Ramsey, M.R.M.R., et al. (2023), Statistical retrieval of volcanic activity in long time series orbital data: Implications for forecasting future activity, Remote Sensing of Environment, 295, 113704, doi:10.1016/j.rse.2023.113704.
-
Michael Ramsey, M.R.M.R., et al. (2022), Will an orbital volcano observatory finally become a reality?, Bull. Volc., 84, 6-13, doi:10.1007/s00445-021-01501-z.
-
Michael Ramsey, M.R.M.R., and I.T.W. Flynn (2020), The Spatial and Spectral Resolution of ASTER Infrared Image Data: A Paradigm Shift in Volcanological Remote Sensing, Rem. Sens., 12, 738, doi:10.3390/rs12040738.
-
Michael Ramsey, M.R.M.R., et al. (2019), The influence of emissivity on the thermo-rheologic modeling of channelized lava flows, Annals of Geophysics, 61, AC69, doi:http://doi.org/10.4401/ag-8077.
-
Michael Ramsey, M.R.M.R., et al. (2016), What can thermal infrared remote sensing of terrestrial volcanoes tell us about processes past and present on Mars?, Journal of Volcanology and Geothermal Research, 311, 198-216, doi:10.1016/j.jvolgeores.2016.01.012.
-
Michael Ramsey, M.R.M.R. (2016), Synergistic use of satellite thermal detection and science: A decadal perspective using ASTER, Geol. Soc., London, Special Publications, 426, 115-136, doi:10.1144/SP426.23.
-
Michael Ramsey, M.R.M.R., et al. (2013), Surface textures and dynamics of the 2005 lava dome at Shiveluch Volcano, Kamchatka, Geol. Soc. Amer. Bull., 124, 678-689, doi:doi:10.1130/B30580.1.
-
Michael Ramsey, M.R.M.R., and A.J.L. Harris (2013), Volcanology 2020: How will thermal remote sensing of volcanic surface activity evolve over the next decade?, Journal of Volcanology and Geothermal Research, 249, 217-233, doi:10.1016/j.jvolgeores.2012.05.011.
-
Michael Ramsey, M.R.M.R., and J. Dehn (2004), Spaceborne observations of the 2000 Bezymianny, Kamchatka eruption: the integration of high-resolution ASTER data into near real-time monitoring using AVHRR, Journal of Volcanology and Geothermal Research, 135, 127-146, doi:10.1016/j.jvolgeores.2003.12.014.
-
Michael Ramsey, M.R.M.R., and L.P. Flynn (2004), Strategies, insights, and the recent advances in volcanic monitoring and mapping with data from NASA’s Earth Observing System, Journal of Volcanology and Geothermal Research, 135, 1-11, doi:10.1016/j.jvolgeores.2003.12.015.
Note: Only publications that have been uploaded to the ESD Publications database are listed here.
Co-Authored Publications
-
Corradino, C., et al. (2024), Quantitative Assessment of Volcanic Thermal Activity from Space Using an Isolation Forest Machine Learning Algorithm, Remote Sensing, 16, doi:10.3390/rs16112001.
-
Williams, D.B., and M.R.M.R. Michael Ramsey (2024), Infrared spectroscopy of volcanoes: Laboratory to orbital scale, Frontiers in Earth Science, 12, 1-19, doi:10.3389/feart.2024.1308103.
-
Corradino, C., et al. (2023), Detection of Subtle Thermal Anomalies: Deep Learning Applied to the ASTER Global Volcano Dataset, IEEE Trans. Geosci. Remote Sens., 61, 5000715, doi:10.1109/TGRS.2023.3241085.
-
Pailot‑Bonnétat, S., et al. (2023), Anatomy of thermal unrest at a hydrothermal system: case study of the 2021–2022 crisis at Vulcano, Earth, Planets and Space, 75, 159, doi:10.1186/s40623-023-01913-5.
-
Thompson, J.O., et al. (2023), The expectations and prospects for quantitative volcanology in the upcoming SBG era, Earth and Space Science, 10, e2022EA002817, doi:doi.org/10.1029/2022EA002817.
-
Rogic, N., et al. (2022), The Impact of Dynamic Emissivity–Temperature Trends on Spaceborne Data: Applications to the 2001 Mount Etna Eruption, Remote Sens., 2022, 1641, doi:10.3390/rs14071641.
-
Simurda, C., et al. (2022), Assessing Lava Flow Subpixel Surface Roughness and Particle Size Distribution for Improved Thermal Inertia Interpretations, doi:10.3390/rs12182914.
-
Thompson, J.O., et al. (2022), Quantitative Thermal Emission Spectroscopy at High Temperatures: A Laboratory Approach for Measurement and Calibration, J. Geophys. Res..
-
Thompson, J.O., et al. (2022), Thermal and seismic precursors to the explosive eruption at La Soufrière Volcano, St. Vincent in April 2021, Earth Planet. Sci. Lett., 592, 117621, doi:10.1016/j.epsl.2022.117621.
-
Williams, D.B., and M.R.M.R. Michael Ramsey (2022), Short communication Analysis of ash emissions from the 2020 Nishinoshima eruption using ASTER thermal infrared orbital data, Journal of Volcanology and Geothermal Research, 421, 107424, doi:10.1016/j.jvolgeores.2021.107424.
-
Mazzeo, G., et al. (2021), Implementation of the NHI (Normalized Hot Spot Indices) Algorithm on Infrared ASTER Data: Results and Future Perspectives, Results and Future Perspectives. Sensors, 21, 1538, doi:10.3390/s21041538.
-
Thompson, J.O., and M.R.M.R. Michael Ramsey (2021), The influence of variable emissivity on lava flow propagation modeling, Bulletin of Volcanology, 83, 41, doi:10.1007/s00445-021-01462-3.
-
Flynn, I.T.W., and M.R.M.R. Michael Ramsey (2020), Pyroclastic Density Current Hazard Assessment and Modeling Uncertainties for Fuego Volcano, Guatemala, Rem. Sens., 12, 2790, doi:10.3390/rs12172790.
-
Mannini, S., et al. (2020), Combining Ground‐ and ASTER‐Based Thermal Measurements to Constrain Fumarole Field Heat Budgets: The Case of Vulcano Fossa 2000–2019, Geophys. Res. Lett., 46, doi:10.1029/2019GL084013.
-
Peltier, A., et al. (2020), Volcano crisis management at Piton de la Fournaise (La Réunion) during the COVID-19 lockdown, Seismol. Res. Lett., XX, 1-15, doi:10.1785/0220200212.
-
Thompson, J.O., and M.R.M.R. Michael Ramsey (2020), Spatiotemporal variability of active lava surface radiative properties using ground-based multispectral thermal infrared data, Journal of Volcanology and Geothermal Research, 408, 107077, doi:10.1016/j.jvolgeores.2020.107077.
-
Thompson, J.O., and M.R.M.R. Michael Ramsey (2020), Uncertainty Analysis of Remotely-Acquired Thermal Infrared Data to Extract the Thermal Properties of Active Lava Surfaces, Remote Sens., 12, 193, doi:10.3390/rs12010193.
-
Harris, A., et al. (2019), Validation of an integrated satellite-data-driven response to an effusive crisis: the April–May 2018 eruption of Piton de la Fournaise, Annals of Geophysics, 61, AC48, doi:http://dx.doi.org/10.4401/ag-7972.
-
Thompson, J.O., et al. (2019), MMT-Cam: A New Miniature Multispectral Thermal Infrared Camera System for Capturing Dynamic Earth Processes, IEEE Trans. Geosci. Remote Sens., 1-9, doi:10.1109/TGRS.2019.2913344.
-
Williams, D.B., and M.R.M.R. Michael Ramsey (2019), On the Applicability of Laboratory Thermal Infrared Emissivity Spectra for Deconvolving Satellite Data of Opaque Volcanic Ash Plumes, Remote Sens., 11, 2318, doi:10.3390/rs11192318.
-
Williams, D.B., et al. (2019), Identifying eruptive sources of drifting volcanic ash clouds using back-trajectory modeling of spaceborne thermal infrared data, Bulletin of Volcanology, 81, 53, doi:10.1007/s00445-019-1312-y.
-
Krippner, J.B., et al. (2018), Parametric analysis of lava dome-collapse events and pyroclastic deposits at Shiveluch volcano, Kamchatka, using visible and infrared satellite data, Journal of Volcanology and Geothermal Research, 354, 115-129, doi:10.1016/j.jvolgeores.2018.01.027.
-
Price, M.A., et al. (2016), Satellite-Based Thermophysical Analysis of Volcaniclastic Deposits: A Terrestrial Analog for Mantled Lava Flows on Mars, Remote Sensing, 8, 152, doi:10.3390/rs8020152.
-
Reath, K.A., et al. (2016), Predicting eruptions from precursory activity using remote sensing data hybridization, Journal of Volcanology and Geothermal Research, 321, 18-30, doi:10.1016/j.jvolgeores.2016.04.027.
-
Hall, J.L., et al. (2015), MAGI: A New High-Performance Airborne Thermal-Infrared Imaging Spectrometer for Earth Science Applications Jeffrey L. Hall, Richard H. Boucher, Kerry N. Buckland, David J. Gutierrez, John A. Hackwell, IEEE Trans. Geosci. Remote Sens., 53, 5447-5457, doi:10.1109/TGRS.2015.2422817.
-
Patrick, M.R., et al. (2015), Operational thermal remote sensing and lava flow monitoring at the Hawaiian Volcano Observatory, Geological Society, London, Special Publications, 426, 489-503, doi:10.1144/SP426.17.
-
Realmuto, V.J., et al. (2015), Specifying the saturation temperature for the HyspIRI 4-μm channel, Remote Sensing of Environment, 167, 40-52, doi:10.1016/j.rse.2015.04.028.
-
Rose, S.R., et al. (2014), Thermal deconvolution: Accurate retrieval of multispectral infrared emissivity from thermally-mixed volcanic surfaces, Remote Sensing of Environment, 140, 690-703, doi:10.1016/j.rse.2013.10.009.
-
Graettinger, A.H., et al. (2013), Remote sensing and geologic mapping of glaciovolcanic deposits in the region surrounding Askja (Dyngjufjöll) volcano, Iceland, International Journal of Remote Sensing, 34, 7178-7198, doi:10.1080/01431161.2013.817716.
-
Reath, K., and M.R.M.R. Michael Ramsey (2013), Exploration of geothermal systems using hyperspectral thermal infrared remote sensing, Journal of Volcanology and Geothermal Research, 265, 27-38, doi:10.1016/j.jvolgeores.2013.08.007.
-
Scheidt, S., et al. (2011), Eolian dynamics and sediment mixing in the Gran Desierto, Mexico, determined from thermal infrared spectroscopy and remote-sensing data, Geological Society of America Bulletin, 1-17, doi:10.1130/B30338.1.
-
Carter, A., and M.R.M.R. Michael Ramsey (2010), Long-Term Volcanic Activity at Shiveluch Volcano: Nine Years of ASTER Spaceborne Thermal Infrared Observations, Remote Sens., 2, 2571-2583, doi:10.3390/rs2112571.
-
Scheidt, S., et al. (2010), Determining soil moisture and sediment availability at White Sands Dune Field, New Mexico, from apparent thermal inertia data, J. Geophys. Res., 115, F02019, doi:10.1029/2009JF001378.
-
Carter, A.J., and M.R.M.R. Michael Ramsey (2009), ASTER- and field-based observations at Bezymianny Volcano: Focus on the 11 May 2007 pyroclastic flow deposit, Remote Sensing of Environment, 113, 2142-2151, doi:10.1016/j.rse.2009.05.020.
-
Carter, A.J., et al. (2009), Micron-scale roughness of volcanic surfaces from thermal infrared spectroscopy and scanning electron microscopy, J. Geophys. Res., 114, B02213, doi:10.1029/2008JB005632.
-
Rose, S.R., and M.R.M.R. Michael Ramsey (2009), The 2005 eruption of Kliuchevskoi volcano: Chronology and processes derived from ASTER spaceborne and field-based data, J. Volc. Geotherm. Res., 184, 367-380, doi:10.1016/j.jvolgeores.2009.05.001.
-
Carter, A.J., et al. (2008), ASTER and field observations of the 24 December 2006 eruption of Bezymianny Volcano, Russia, Remote Sensing of Environment, 112, 2569-2577, doi:10.1016/j.rse.2007.12.001.
-
Scheidt, S., et al. (2008), Radiometric normalization and image mosaic generation of ASTER thermal infrared data: An application to extensive sand sheets and dune fields, Remote Sensing of Environment, 112, 920-933, doi:10.1016/j.rse.2007.06.020.
-
Carter, A.J., et al. (2007), Detection of a new summit crater on Bezymianny Volcano lava dome: satellite and field-based thermal data, Bull. Volcanol., doi:10.1007/s00445-007-0113-x.
-
Vaughan, R., et al. (2005), Monitoring eruptive activity at Mount St. Helens with TIR image data, Geophys. Res. Lett., 32, L19305, doi:10.1029/2005GL024112.
-
Byrnes, J.M., et al. (2004), Surface unit characterization of the Mauna Ulu flow field, Kilauea Volcano, Hawai'i, using integrated field and remote sensing analyses, Journal of Volcanology and Geothermal Research, 135, 169-193, doi:10.1016/j.jvolgeores.2003.12.016.
-
Hellman, M.J., and M.R.M.R. Michael Ramsey (2004), Analysis of hot springs and associated deposits in Yellowstone National Park using ASTER and AVIRIS remote sensing, Journal of Volcanology and Geothermal Research, 135, 195-219, doi:10.1016/j.jvolgeores.2003.12.012.
Note: Only publications that have been uploaded to the ESD Publications database are listed here.