Organization
NASA Goddard Space Flight Center
First Author Publications
-
Yorks, J.E., et al. (2023), Meyer, J. L. Carr, M. J. Garay, K. E. Christian; A. Bennedetti, A. M. Ring, A. Crawford, M. J. Pavolonis, V. Aquila, J. Kim, S. Kondragunta, A SmallSat Concept to Resolve Diurnal and Vertical Variations of Aerosols and Clouds, Bull. Am. Meteorol. Soc., doi:10.1175/BAMS-D-21-0179.1.
-
Yorks, J.E., et al. (2021), Aerosol and Cloud Detection Using Machine Learning Algorithms and Space-Based Lidar Data, Atmosphere, 12, 606, doi:10.3390/atmos12050606.
-
Yorks, J.E., et al. (2016), An overview of the CATS level 1 processing algorithms and data products, Geophys. Res. Lett., 43, 4632-4639, doi:10.1002/2016GL068006.
-
Yorks, J.E., et al. (2014), The Airborne Cloud–Aerosol Transport System: Overview and Description of the Instrument and Retrieval Algorithms, J. Atmos. Oceanic Technol., 31, 2482-2497, doi:10.1175/JTECH-D-14-00044.1.
-
Yorks, J.E., et al. (2011), Statistics of Cloud Optical Properties from Airborne Lidar Measurements, J. Atmos. Oceanic Technol., 28, 869-883, doi:10.1175/2011JTECHA1507.1.
-
Yorks, J.E., et al. (2011), Airborne validation of cirrus cloud properties derived from CALIPSO lidar measurements: Spatial properties, J. Geophys. Res., 116, D19207, doi:10.1029/2011JD015942.
-
Yorks, J.E., et al. (2009), Radiative effects of African dust and smoke observed from Clouds and the Earth’s Radiant Energy System (CERES) and Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) data, J. Geophys. Res., 114, D00H04, doi:10.1029/2009JD012000.
Note: Only publications that have been uploaded to the ESD Publications database are listed here.
Co-Authored Publications
-
Christian, K., et al. (2024), Differences in the Evolution of Pyrocumulonimbus and Volcanic Stratospheric Plumes as Observed by CATS and CALIOP Space-Based Lidars, doi:10.3390/atmos11101035.
-
Levy, C., et al. (2024), Mineral dust optical properties for remote sensing and global modeling: A review Patricia Castellanos a, *, Peter Colarco b, W. Reed Espinosa c, Scott D. Guzewich d, Robert, Remote Sensing of Environment, 303, 113982, doi:10.1016/j.rse.2023.113982.
-
McMurdie, L.A., et al. (2024), Chasing Snowstorms The Investigation of Microphysics and Precipitation for Atlantic Coast-Threatening Snowstorms (IMPACTS) Campaign, Bull. Am. Meteorol. Soc., doi:10.1175/BAMS-D-20-0246.1.
-
Midzak, N., et al. (2024), An Investigation of Non-Spherical Smoke Particles Using CATS Lidar, J. Geophys. Res..
-
Midzak, N., et al. (2024), An investigation of non-spherical smoke particles using CATS lidar, J. Geophys. Res., 128, e2023JD038805., doi:10.1029/2023JD038805.
-
Zaremba, T.J., et al. (2024), Cloud-Top Phase Characterization of Extratropical Cyclones over the Northeast and Midwest United States: Results from IMPACTS, J. Atmos. Sci., 81, 341-361, doi:10.1175/JAS-D-23-0123.1.
-
Dunnavan, E.L., et al. (2023), High-Resolution Snowstorm Measurements and Retrievals Using Cross-Platform Multi-Frequency and Polarimetric Radars, Geophys. Res. Lett., 50, e2023GL103692, doi:10.1029/2023GL103692.
-
Janiszeski, A., et al. (2023), A Kinematic Modeling Study of the Reorganization of Snowfall between Cloud-Top Generating Cells and Low-Level Snowbands in Midlatitude Winter Storms, J. Atmos. Sci., 80, 2729-2745, doi:10.1175/JAS-D-23-0024.1.
-
Lu, Z., et al. (2023), First Mapping of Monthly and Diurnal Climatology of Saharan Dust Layer Height Over the Atlantic Ocean From EPIC/DSCOVR in Deep Space, Geophys. Res. Lett., 50, e2022GL102552, doi:10.1029/2022GL102552.
-
McGill, M., et al. (2023), (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice., TYPE Original Research, doi:10.3389/frsen.2023.1116817.
-
Midzak, N., et al. (2022), Constrained Retrievals of Aerosol Optical Properties Using Combined Lidar and Imager Measurements During the FIREX-AQ Campaign, Front. Remote Sens., 3, 818605, doi:10.3389/frsen.2022.818605.
-
Nowottnick, E.P., et al. (2022), Aerosol Detection from the Cloud–Aerosol Transport System on the International Space Station: Algorithm Overview and Implications for Diurnal Sampling, Atmosphere, 13, 1439, doi:10.3390/atmos13091439.
-
Chen, X., et al. (2021), First retrieval of absorbing aerosol height over dark target using TROPOMI oxygen B band: Algorithm development and application for surface particulate matter estimates, Remote Sensing of Environment, 265, 112674, doi:10.1016/j.rse.2021.112674.
-
Palm, S.P., et al. (2021), Planetary Boundary Layer Height Estimates From ICESat-2 and CATS Backscatter Measurements, Front. Remote Sens., 2, 716951, doi:10.3389/frsen.2021.716951.
-
Leifer, I., et al. (2020), Air pollution inputs to the Mojave Desert by fusing surface mobile and airborne in situ and airborne and satellite remote sensing: A case study of interbasin transport with numerical model validation, Atmos. Environ., 224, 117184, doi:10.1016/j.atmosenv.2019.117184.
-
McGill, M., and J.E. Yorks (2020), Observation and quantification of westerly outflow from southern Africa using spaceborne lidar, S Afr J Sci., 116, 6398-6404, doi:10.17159/sajs.2020/6398.
-
Midzak, N., et al. (2020), A Classification of Ice Crystal Habits Using Combined Lidar and Scanning Polarimeter Observations during the SEAC4RS Campaign, J. Atmos. Oceanic Technol., 37, 2185-2196, doi:10.1175/JTECH-D-20-0037.1.
-
Christian, K.E., et al. (2019), Radiative Forcing and Stratospheric Warming of Pyrocumulonimbus Smoke Aerosols: First Modeling Results With Multisensor (EPIC, CALIPSO, and CATS) Views from Space, Geophys. Res. Lett., 46, 10,061-10,071, doi:10.1029/2019GL082360.
-
Lee, L., et al. (2019), Investigation of CATS aerosol products and application toward global diurnal variation of aerosols, Atmos. Chem. Phys., 19, 12687-12707, doi:10.5194/acp-19-12687-2019.
-
Lee, L., et al. (2019), Investigation of CATS aerosol products and application toward global diurnal variation of aerosols, Atmos. Chem. Phys., 19, 12687-12707, doi:10.5194/acp-19-12687-2019.
-
Pauly, R., et al. (2019), Cloud-Aerosol Transport System (CATS) 1064 nm calibration and validation, Atmos. Meas. Tech., 12, 6241-6258, doi:10.5194/amt-12-6241-2019.
-
Proestakis, E., et al. (2019), EARLINET evaluation of the CATS Level 2 aerosol backscatter coefficient product, Atmos. Chem. Phys., 19, 11743-11764, doi:10.5194/acp-19-11743-2019.
-
Noel, V., et al. (2018), The diurnal cycle of cloud profiles over land and ocean between 51◦ S and 51◦ N, seen by the CATS spaceborne lidar from the International Space Station, Atmos. Chem. Phys., 18, 9457-9473, doi:10.5194/acp-18-9457-2018.
-
Di Noia, ., et al. (2017), Combined neural network/Phillips–Tikhonov approach to aerosol retrievals over land from the NASA Research Scanning Polarimeter, Atmos. Meas. Tech., 10, 4235-4252, doi:10.5194/amt-10-4235-2017.
-
Rajapakshe, C., et al. (2017), Seasonally transported aerosol layers over southeast Atlantic are closer to underlying clouds than previously reported, Geophys. Res. Lett., 44, 5818-5825, doi:10.1002/2017GL073559.
-
Sinclair, K.A., et al. (2017), Remote sensing of multiple cloud layer heights using multi-angular measurements, Atmos. Meas. Tech., 10, 2361-2375, doi:10.5194/amt-10-2361-2017.
-
Alexandrov, M.D., et al. (2016), Polarized view of supercooled liquid water clouds, Remote Sensing of Environment, 181, 96-110, doi:10.1016/j.rse.2016.04.002.
-
Hughes, E.J., et al. (2016), Using CATS near-real-time lidar observations to monitor and constrain volcanic sulfur dioxide (SO2) forecasts, Geophys. Res. Lett., 43, 11,089-11,097, doi:10.1002/2016GL070119.
-
Meyer, K.G., et al. (2016), Cirrus cloud optical and microphysical property retrievals from eMAS during SEAC4RS using bi-spectral reflectance measurements within the 1.88 µm water vapor absorption band, Atmos. Meas. Tech., 9, 1743-1753, doi:10.5194/amt-9-1743-2016.
-
van Diedenhoven, B., et al. (2016), Vertical variation of ice particle size in convective cloud tops, Geophys. Res. Lett., 43, doi:10.1002/2016GL068548.
-
Wu, L., et al. (2016), Passive remote sensing of aerosol layer height using near-UV multiangle polarization measurements, Geophys. Res. Lett., 43, 8783-8790, doi:10.1002/2016GL069848.
-
Alexandrov, M.D., et al. (2015), Liquid water cloud properties during the Polarimeter Definition Experiment (PODEX), Remote Sensing of Environment, 169, 20-36, doi:10.1016/j.rse.2015.07.029.
-
Hlavka, D.L., et al. (2012), Airborne validation of cirrus cloud properties derived from CALIPSO lidar measurements: Optical properties, J. Geophys. Res., 117, D09207, doi:10.1029/2011JD017053.
Note: Only publications that have been uploaded to the ESD Publications database are listed here.