ER-2 Doppler Radar

Status

Operated By
PI

EDOP is an X-band (9.6 GHz) Doppler radar nose-mounted in the ER-2. The instrument has two antennas: one nadir-pointing with pitch stabilization, and the other forward pointing. The general objectives of EDOP are the measurement of the vertical structure of precipitation and air motions in mesoscale precipitation systems and the development of spaceborne radar algorithms for precipitation estimation.

EDOP measures high-resolution time-height sections of reflectivity and vertical hydrometeor velocity (and vertical air motion when the hydrometeor fall speed and aircraft motions are removed). An additional capability on the forward beam permits measurement of the linear depolarization ratio (LDR) which provides useful information on orientation of the hydrometeors (i.e., the canting angle), hydrometeor phase, size, etc. The dual beam geometry has advantages over a single beam. For example, along-track horizontal air motions can be calculated by using the displacement of the ER-2 to provide dual Doppler velocities (i.e., forward and nadir beams) at a particular altitude.

EDOP is designed as a turn-key system with real-time processing on-board the aircraft. The RF system consists of a coherent frequency synthesizer which generates the transmitted and local oscillator frequencies used in the system, a pulse modulated (0.5 to 2.0 micro-second pulse) high gain 20 kW Traveling Wave Tube Amplifier which is coupled through the duplexer to the antenna, and the receiver which is comprised of a low-noise (~1dB) GaAs preamplifier followed by a mixer for each of the receive channels. The composite system generates a nadir oriented beam with a co-polarized receiver and a 350 forward directed beam with co- and cross- polarized receivers. The antenna design consists of two separate offset-fed parabolic antennas, with high polarization isolation feed horns, mounted in the nose radome of the ER-2. The antennas are 0.76 m diameter resulting in a 30 beamwidth and a spot size of about 1.2 km at the surface (assuming a 20 km aircraft altitude). The two beams operate simultaneously from a single transmitter.

Instrument Type
Measurements
Aircraft
Point(s) of Contact

 

Disclaimer: This material is being kept online for historical purposes. Though accurate at the time of publication, it is no longer being updated. The page may contain broken links or outdated information, and parts may not function in current web browsers. Visit https://espo.nasa.gov for information about our current projects.