Balloon

Continuous Flow Streamwise Thermal Gradient CCN Counter

Developed by Droplet Measurement Technologies, the CFSTGC is based on a concept by Roberts and Nenes [2005]. The instrument counts the fraction of aerosol particles that become droplets when exposed to a given water vapor supersaturation (RH > 100%).

As with all CCN counters, a temperature gradient is applied to produce a supersaturation of water vapor. However, the mechanism for generating supersaturation is not the same for all CCN counters. For example, for continuous flow parallel plate diffusion chambers, the temperature gradient is perpendicular to the flow, and supersaturation is a result of the nonlinear dependence of vapor pressure upon temperature. The same mechanism applies for static diffusion cloud chambers, where there is no flow at all.

However, as the name implies, for the Continuous Flow Streamwise Thermal Gradient CCN Counter, the temperature gradient is in the streamwise direction (maintained by thermoelectric coolers). In this case, supersaturation results as a consequence of the greater rate of mass transfer over heat transfer.

With laminar flow, heat and water vapor are transferred to the centerline of the column from the walls only by diffusion.

Since molecular diffusivity is greater than thermal diffusivity, the distance downstream that a water molecule travels before reaching the centerline is less than the distance the heat travels downstream before reaching the centerline. If you pick a point at the centerline, the heat originated from a greater distance upstream than the water vapor.

There are four facts that are necessary to explain how supersaturation is generated within the CFSTGC:

1) Assuming that the inner surface of the column is saturated with water vapor at all points, since the temperature is greater at point B than at point A, the water vapor partial pressure is also greater at point B than at point A.

2) The actual partial pressure of water vapor at point C is equal to the partial pressure of water vapor at point B.

3) However, since the temperature at point C is the same as at point A, the equilibrium water vapor pressure at point C is equal to the water vapor partial pressure at point A.

4) The saturation ratio is the ratio between the actual partial pressure of water vapor and the equilibrium vapor pressure. This is equivalent to the partial pressure at point B divided by the partial pressure at point A, which is always greater than one. Thus supersaturation is generated through a dynamic equilibrium.

Instrument Type
Measurements
Point(s) of Contact
Argus Tunable Diode Laser Instrument

Argus is a two channel, tunable diode laser instrument set up for the simultaneous, in situ measurement of CO (carbon monoxide), N2O (nitrous oxide) and CH4 (methane) in the troposphere and lower stratosphere. The instrument measures 40 x 30 x 30 cm and weighs 21 kg. An auxiliary, in-flight calibration system has dimensions 42 x 26 x 34 cm and weighs 17 kg.

The instrument is an absorption spectrometer operating in rapid scan, secondharmonic mode using frequency-modulated tunable lead-salt diode lasers emitting in the mid-infrared. Spectra are co-added for two seconds and are stored on a solid state disk for later analysis. The diode laser infrared beam is shaped by two anti-refection coated lenses into an f/40 beam focused at the entrance aperture of a multi-pass Herriott cell. The Herriott cell is common to both optical channels and is a modified astigmatic cell (New Focus Inc., Santa Clara, California).

The aspherical mirrors are coated with protected silver for optimal infrared reflectivity. The cell is set up for a 182-pass state for a total path of 36m. The pass number can be confirmed by visual spot pattern verification on the mirrors observed through the glass cell body when the cell is illuminated with a visible laser beam. However, instrument calibration is always carried out using calibrated gas standards with the Argus instrument operating at its infrared design wavelengths, 3.3 and 4.7 micrometers respectively for CH4 and CO detection. The electronic processing of the second harmonic spectra is done by standard phase sensitive amplifier techniques with demodulation occurring at twice the laser modulation frequency of 40 kHz. To optimize the secondharmonic signal amplitude in a changing ambient pressure environment the laser modulation amplitude is updated every 2 seconds to its optimal theoretical value based upon the measured pressure in the Herriott cell.

Measurements
CO,
CH4,
Point(s) of Contact
Airborne 2-Channel Laser Infrared Absorption Spectrometer

The Airborne Laser Infrared Absorption Spectrometer (ALIAS-II) is a very high resolution scanning tunable diode laser spectrometer which makes direct, simultaneous measurements of selectable combinations of HCl, NO2, CO, CO2, CH4, and N2O at sub-part-per-billion levels over a 3-30 second integration time. The measurement technique is based upon using tunable lead-salt and/or quantum cascade lasers operating from 3.4 to 8 microns wavelength scanning over absorption lines at 10 Hz recording second harmonic spectra. The instrument features an open-cradle multipass Herriott absorption cell with 15.24-cm diameter spherical zerodur mirrors coated with gold on chrome. The separation between the mirrors is adjustable allowing for a relatively small cell (0.75-m to 1.5-m) to contain an optical path length up to 120-m, depending on the spacing of the mirrors. Lasers and detectors are contained in a lightweight aluminum liquid nitrogen Dewar which can achieve a 28-hour hold time with only a 2 liter charge of liquid nitrogen. The instrument features custom laser current drives, signal chains, InSb detectors and preamps, 16-bit signal averager, analog signal conditioner, and digital I/O which are controlled by an onboard Pentium processor. Data is written to a ruggedized 2-Gb hard disk every 30 seconds and simultaneously transmitted via telemetry to ground station computers which provide backup storage of the data. The instrument weighs 36 kg and requires <56 watts for operation. Additional power up to 250 watts is available for structural heaters and current draw varies with atmospheric conditions.

Instrument Type
Measurements
N2O,
CH4,
CO,
HCl,
Aircraft
Point(s) of Contact
Aircraft Laser Infrared Absorption Spectrometer

ALIAS (Aircraft Laser Infrared Absorption Spectrometer) measures total water, total water isotopes, carbon monoxide, and carbon dioxide isotope ratios. No other instrument provides real-time measurements of carbon dioxide isotope ratios which are clear identifiers of atmospheric transport (18O/17O/16O for stratospheric intrusion, 13C/12C for anthropogenic signals). ALIAS easily adapts to changing mission priorities and can be configured to measure HCl, CH4, SO2, and N2O by simply replacing a semiconductor laser. These measurements contribute to Atmospheric Composition Focus Area research by providing key data on how convective processes affect stratospheric composition, the development of cirrus particles and their affect on Earth's radiative balance, and health of the ozone layer through measurement of chlorine partitioning.

Measurements
Point(s) of Contact

 

Disclaimer: This material is being kept online for historical purposes. Though accurate at the time of publication, it is no longer being updated. The page may contain broken links or outdated information, and parts may not function in current web browsers. Visit https://espo.nasa.gov for information about our current projects.