The POSIDON website is undergoing a major upgrade that began Friday, October 11th at 5:00 PM PDT. The new upgraded site will be available no later than Monday, October 21st. Until that time, the current site will be visible but logins are disabled.
Home > William L. Smith Jr.
William L. Smith Jr.
Organization:
NASA Langley Research Center
Business Address:
Hampton, VA 23681
United StatesFirst Author Publications:
- Smith, W., et al. (2017), Arctic Radiation-Icebridge Sea And Ice Experiment: The Arctic Radiant Energy System during the Critical Seasonal Ice Transition, Bull. Am. Meteorol. Soc., 1399-1426, doi:10.1175/BAMS-D-14-00277.1.
- Smith, W., et al. (2012), Determining the Flight Icing Threat to Aircraft with Single-Layer Cloud Parameters Derived from Operational Satellite Data, J. Appl. Meteor. Climat., 51, 1794-1810, doi:10.1175/JAMC-D-12-057.1.
- Smith, W., et al. (2008), An evaluation of operational GOES-derived single-layer cloud top heights with ARSCL data over the ARM Southern Great Plains Site, Geophys. Res. Lett., 35, L13820, doi:10.1029/2008GL034275.
Co-Authored Publications:
- Ren, T., et al. (2024), On the Consistency of Ice Cloud Optical Models for Spaceborne Remote Sensing Applications and Broadband Radiative Transfer Simulations, J. Geophys. Res..
- Sun-Mack, S., et al. (2024), Identification of ice-over-water multilayer clouds using multispectral satellite data in an artificial neural network, Atmos. Meas. Tech., 17, 3323-3346, doi:10.5194/amt-17-3323-2024.
- Li, D., et al. (2023), On the Scattering-Angle Dependence of the Spectral Consistency of Ice Cloud Optical Thickness Retrievals Based on Geostationary Satellite Observations, IEEE Trans. Geosci. Remote Sens., 61, 4108012, doi:10.1109/TGRS.2023.3331970.
- Minnis, P., et al. (2023), VIIRS Edition 1 Cloud Properties for CERES, Part 1: Algorithm Adjustments and Results, Algorithm Adjustments and Results. Remote Sens., 15, 578, doi:10.3390/rs15030578.
- Sorooshian, A., et al. (2023), Spatially coordinated airborne data and complementary products for aerosol, gas, cloud, and meteorological studies: the NASA ACTIVATE dataset, Earth Syst. Sci. Data, 15, 3419-3472, doi:10.5194/essd-15-3419-2023.
- Benjamin, S. G., et al. (2021), Stratiform Cloud-Hydrometeor Assimilation for HRRR and RAP Model Short-Range Weather Prediction, Mon. Wea. Rev., 149, 2673-2694, doi:10.1175/MWR-D-20-0319.1.
- Minnis, P., et al. (2021), CERES MODIS Cloud Product Retrievals for Edition 4—Part I: Algorithm Changes, IEEE Trans. Geosci. Remote Sens., 59, 2744-2780, doi:10.1109/TGRS.2020.3008866.
- Yost, C., et al. (2021), CERES MODIS Cloud Product Retrievals for Edition 4—Part II: Comparisons to CloudSat and CALIPSO, IEEE Trans. Geosci. Remote Sens., 59, 3695-3724, doi:10.1109/TGRS.2020.3015155.
- Duda, D., et al. (2019), Northern Hemisphere contrail properties derived from Terra and Aqua MODIS data for 2006 and 2012, Atmos. Chem. Phys., 19, 5313-5330, doi:10.5194/acp-19-5313-2019.
- Kurzrock, F., et al. (2019), Evaluation of WRF-DART (ARW v3.9.1.1 and DART Manhattan release) multiphase cloud water path assimilation for short-term solar irradiance forecasting in a tropical environment, Geosci. Model. Dev., 12, 3939-3954, doi:10.5194/gmd-12-3939-2019.
- Minnis, P., et al. (2019), Advances in neural network detection and retrieval of multilayer clouds for CERES using multispectral satellite data, Proc. SPIE Remote Sens. Clouds and Atmospheric., XXIV, 1-12, doi:10.1117/12.2532931.
- Saito, M., et al. (2019), An Efficient Method for Microphysical Property Retrievals in Vertically Inhomogeneous Marine Water Clouds Using MODIS‐ CloudSat Measurements, J. Geophys. Res., 124, 2174-2193, doi:10.1029/2018JD029659.
- Sun-Mack, S., et al. (2019), Calibration Changes to Terra MODIS Collection-5 Radiances for CERES Edition 4 Cloud Retrievals, IEEE Trans. Geosci. Remote Sens., 1-17, doi:10.1109/TGRS.2018.2829902.
- Trepte, Q. Z., et al. (2019), Global Cloud Detection for CERES Edition 4 Using Terra and Aqua MODIS Data, IEEE Trans. Geosci. Remote Sens., 57, 9410-9449, doi:10.1109/TGRS.2019.2926620.
- Jones, T. A., et al. (2018), Comparison of Cloud Microphysics Schemes in a Warn-on-Forecast System Using Synthetic Satellite Objects, Jones Et Al., doi:10.1175/WAF-D-18-0112.1.
- Loeb, N., et al. (2018), Impact of Ice Cloud Microphysics on Satellite Cloud Retrievals and Broadband Flux Radiative Transfer Model Calculations, J. Climate, 31, 1851-1864, doi:10.1175/JCLI-D-17-0426.1.
- Tian, J., et al. (2018), Comparisons of Ice Water Path in Deep Convective Systems Among Ground-Based, GOES, and CERES-MODIS Retrievals, J. Geophys. Res., 123, doi:10.1002/2017JD027498.
- Wall, C. J., et al. (2018), The Life Cycle of Anvil Clouds and the Top-of-Atmosphere Radiation Balance over the Tropical West Pacific, J. Climate, 31, 10059-10080, doi:10.1175/JCLI-D-18-0154.1.
- Yost, C., et al. (2018), A prototype method for diagnosing high ice water content probability using satellite imager data, Atmos. Meas. Tech., 11, 1615-1637, doi:10.5194/amt-11-1615-2018.
- Sun-Mack, S., et al. (2017), Detection of Single and Multilayer Clouds in an Artificial Neural Network Approach. Proc. SPIE Conf. Remote Sens. Clouds and the Atmos. XXII, Warsaw, Poland, 10424-7, 11-14, doi:10.1117/12.2277397.
- Minnis, P., et al. (2012), Simulations of Infrared Radiances over a Deep Convective Cloud System Observed during TC4: Potential for Enhancing Nocturnal Ice Cloud Retrievals, Remote Sens., 4, 3022-3054, doi:10.3390/rs4103022.
- Minnis, P., et al. (2011), CERES Edition-2 cloud property retrievals using TRMM VIRS and Terra and Aqua MODIS data, Part II: Examples of average results and comparisons with other data, IEEE Trans. Geosci. Remote Sens., 49, 11-2892).
- Minnis, P., et al. (2011), CERES Edition-2 cloud property retrievals using TRMM VIRS and Terra and Aqua MODIS data, Part I: Algorithms, IEEE Trans. Geosci. Remote Sens., 49, 11-2892).
- Wang, D., et al. (2007), Real-time mesoscale forecast support during the CLAMS field campaign, Adv. Atmos. Sci., 24, 599-605, doi:10.1007/s00376-007-0599-3.
- Wang, D., et al. (2007), Real-time mesoscale forecast support during the CLAMS field campaign, Adv. Atmos. Sci., 24, 599-605, doi:10.1007/s00376-007-0599-3.
- Smith, W., et al. (2005), The NPOESS Airborne Sounding Testbed Interferometer—Remotely sensed surface and atmospheric conditions during CLAMS, J. Atmos. Sci., 62, 1117-1133.
- Smith, W., et al. (2005), The NPOESS Airborne Sounding Testbed Interferometer—Remotely Sensed Surface and Atmospheric Conditions during CLAMS, J. Atmos. Sci., 62, 1118-1134.
Note: Only publications that have been uploaded to the
ESD Publications database are listed here.