Organization:
NASA Goddard Space Flight Center
Business Address:
Greenbelt, MD
United StatesFirst Author Publications:
- Marshak, A., et al. (2018), Earth Observations From Dscovr Epic Instrument, Bull. Am. Meteorol. Soc., 1829-1850, doi:10.1175/BAMS-D-17-0223.1.
- Marshak, A., et al. (2014), Extending 3D near-cloud corrections from shorter to longer wavelengths, J. Quant. Spectrosc. Radiat. Transfer, 147, 79-85, doi:10.1016/j.jqsrt.2014.05.022.
- Marshak, A., et al. (2012), On spectral invariance of single scattering albedo for water droplets and ice crystals at weakly absorbing wavelengths, J. Quant. Spectrosc. Radiat. Transfer, 113, 715-720, doi:10.1016/j.jqsrt.2012.02.021.
- Marshak, A., et al. (2011), Spectrally Invariant Approximation within Atmospheric Radiative Transfer, J. Atmos. Sci., 68, 3094-3111, doi:10.1175/JAS-D-11-060.1.
- Marshak, A., et al. (2009), Spectral invariant behavior of zenith radiance around cloud edges observed by ARM SWS, Geophys. Res. Lett., 36, L16802, doi:10.1029/2009GL039366.
- Marshak, A., et al. (2008), A simple model for the cloud adjacency effect and the apparent bluing of aerosols near clouds, J. Geophys. Res., 113, D14S17, doi:10.1029/2007JD009196.
- Marshak, A., et al. (2006), Impact of three-dimensional radiative effects on satellite retrievals of cloud droplet sizes, J. Geophys. Res., 111, D09207, doi:10.1029/2005JD006686.
- Marshak, A., et al. (2006), What does reflection from cloud sides tell us about vertical distribution of cloud droplet sizes?, Atmos. Chem. Phys., 6, 5295-5305, doi:10.5194/acp-6-5295-2006.
- Marshak, A., et al. (2005), Small-Scale Drop-Size Variability: Empirical Models for Drop-Size-Dependent Clustering in Clouds, J. Atmos. Sci., 62, 551-558.
- Marshak, A., et al. (2004), The ‘‘RED versus NIR’’ Plane to Retrieve Broken-Cloud Optical Depth from GroundBased Measurements, J. Atmos. Sci., 61, 1911-1925.
- Marshak, A., et al. (2000), Cloud – vegetation interaction: use of Normalized Difference Cloud Index for estimation of cloud optical thickness, Geophys. Res. Lett., 27, 1695-1698, doi:10.1029/1999GL010993.
Co-Authored Publications:
- Valero, F., A. Marshak, and P. Minnis (2021), Lagrange Point Missions: The Key to next Generation Integrated Earth Observations. DSCOVR Innovation, DSCOVR Innovation. Front. Remote Sens., 2, 745938, doi:10.3389/frsen.2021.745938.
- Várnai, T., and A. Marshak (2021), Analysis of Near-Cloud Changes in Atmospheric Aerosols Using Satellite Observations and Global Model Simulations, Remote Sens., 13, 1151, doi:10.3390/rs13061151.
- Delgado‐Bonal, A., et al. (2020), Daytime Variability of Cloud Fraction From DSCOVR/EPIC Observations, J. Geophys. Res., 125, 1-11, doi:10.1029/2019JD031488.
- Spencer, R. S., et al. (2019), Exploring Aerosols Near Clouds With High‐Spatial‐ Resolution Aircraft Remote Sensing During SEAC4RS, J. Geophys. Res..
- Yang, Y., et al. (2019), Cloud products from the Earth Polychromatic Imaging Camera (EPIC): algorithms and initial evaluation, Atmos. Meas. Tech., 12, 2019-2031, doi:10.5194/amt-12-2019-2019.
- Davis, A. B., et al. (2018), Cloud information content in EPIC/DSCOVR’s oxygen A- and B-band channels: An optimal estimation approach, J. Quant. Spectrosc. Radiat. Transfer, 216, 6-16, doi:10.1016/j.jqsrt.2018.05.007.
- Davis, A. B., et al. (2018), Cloud information content in EPIC/DSCOVR’s oxygen A- and B-band channels: A physics-based approach, J. Quant. Spectrosc. Radiat. Transfer, 220, 84-96, doi:10.1016/j.jqsrt.2018.09.006.
- Várnai, T., and A. Marshak (2018), Satellite Observations of Cloud-Related Variations in Aerosol Properties, Atmosphere, 9, 430, doi:10.3390/atmos9110430.
- Alexandrov, M. D., and A. Marshak (2017), Cellular Statistical Models of Broken Cloud Fields. Part III: Markovian Properties, J. Atmos. Sci., 74, 2921-2935, doi:10.1175/JAS-D-17-0075.1.
- Várnai, T., A. Marshak, and T. F. Eck (2017), Observation-Based Study on Aerosol Optical Depth and Particle Size in Partly Cloudy Regions, J. Geophys. Res., 122, 10,013-10,024, doi:10.1002/2017JD027028.
- Yang, Y., et al. (2017), Snow grain size retrieval over the polar ice sheets with the Ice, Cloud, and land Elevation Satellite (ICESat) observations, J. Quant. Spectrosc. Radiat. Transfer, 188, 159-164, doi:10.1016/j.jqsrt.2016.03.033.
- Alexandrov, M. D., et al. (2016), New Statistical Model for Variability of Aerosol Optical Thickness: Theory and Application to MODIS Data over Ocean*, J. Atmos. Sci., 73, 821-837, doi:10.1175/JAS-D-15-0130.1.
- Wen, G., et al. (2016), Testing the two-layer model for correcting near-cloud reflectance enhancement using LES/SHDOM-simulated radiances, J. Geophys. Res., 121, 9661-9674, doi:10.1002/2016JD025021.
- Zhang, Z., et al. (2016), A framework based on 2-D Taylor expansion for quantifying the impacts of subpixel reflectance variance and covariance on cloud optical thickness and effective radius retrievals based on the bispectral method, J. Geophys. Res., 121, 7007-7025, doi:10.1002/2016JD024837.
- Knobelspiesse, K., et al. (2015), Cloud thermodynamic phase detection with polarimetrically sensitive passive sky radiometers, Atmos. Meas. Tech., 8, 1537-1554, doi:10.5194/amt-8-1537-2015.
- Várnai, T., and A. Marshak (2015), Effect of cloud fraction on near-cloud aerosol behavior in the MODIS atmospheric correction ocean color product. , Remote Sens., 7, 5283-5299, doi:10.3390/rs70505283.
- Várnai, T., and A. Marshak (2014), Near-cloud aerosol properties from the 1 km resolution MODIS ocean product, J. Geophys. Res., 119, 1546-1554, doi:10.1002/2013JD020633.
- Yang, W., et al. (2014), CALIPSO observations of near-cloud aerosol properties as a function of cloud fraction, Geophys. Res. Lett., 41, doi:10.1002/2014GL061896.
- Yang, Y., et al. (2014), First Satellite-detected Perturbations of Outgoing Longwave Radiation Associated with Blowing Snow Events over Antarctica, Geophys. Res. Lett., 41, 730-735, doi:10.1002/2013GL058932.
- Várnai, T., A. Marshak, and W. Yang (2013), Multi-satellite aerosol observations in the vicinity of clouds, Atmos. Chem. Phys., 13, 3899-3908, doi:10.5194/acp-13-3899-2013.
- Wen, G., et al. (2013), Improvement of MODIS aerosol retrievals near clouds, J. Geophys. Res., 118, 1-14, doi:10.1002/jgrd.50617.
- Yang, W., et al. (2013), Shape-induced gravitational sorting of Saharan dust during transatlantic voyage: Evidence from CALIOP lidar depolarization measurements, Geophys. Res. Lett., 40, 1-6, doi:10.1002/grl.50603.
- Yang, Y., et al. (2013), Assessment of Cloud Screening With Apparent Surface Reflectance in Support of the ICESat-2 Mission, IEEE Trans. Geosci. Remote Sens., 51, 1037-1045, doi:10.1109/TGRS.2012.2204066.
- Yang, Y., et al. (2013), A method of retrieving cloud top height and cloud geometrical thickness with oxygen A and B bands for the Deep Space Climate Observatory (DSCOVR) mission: Radiative transfer simulations, J. Quant. Spectrosc. Radiat. Transfer, 122, 141-149, doi:10.1016/j.jqsrt.2012.09.017.
- Chiu, J. C., et al. (2012), Cloud droplet size and liquid water path retrievals from zenith radiance measurements: examples from the Atmospheric Radiation Measurement Program and the Aerosol Robotic Network, Atmos. Chem. Phys., 12, 10313-10329, doi:10.5194/acp-12-10313-2012.
- Knyazikhin, Y., et al. (2012), Hyperspectral remote sensing of foliar nitrogen content, Proc. Natl. Acad. Sci., doi:10.1073/pnas.1210196109.
- Korkin, S., A. Lyapustin, and A. Marshak (2012), On the accuracy of double scattering approximation for atmospheric polarization computations, J. Quant. Spectrosc. Radiat. Transfer, 113, 172-181, doi:10.1016/j.jqsrt.2011.10.008.
- Várnai, T., and A. Marshak (2012), Analysis of co-located MODIS and CALIPSO observations near clouds, Atmos. Meas. Tech., 5, 389-396, doi:10.5194/amt-5-389-2012.
- Vogelmann, A. M., et al. (2012), Racoro Extended-Term Aircraft Observations Of Boundary Layer Clouds, Bull. Am. Meteorol. Soc., 861-878, doi:10.1175/BAMS-D-11-00189.1.
- Yang, W., et al. (2012), CALIPSO observations of transatlantic dust: vertical stratification and effect of clouds, Atmos. Chem. Phys., 12, 11339-11354, doi:10.5194/acp-12-11339-2012.
- Yang, W., et al. (2012), Effect of CALIPSO cloud–aerosol discrimination (CAD) confidence levels on observations of aerosol properties near clouds, Atmos. Res., 116, 134-141, doi:10.1016/j.atmosres.2012.03.013.
- Martins, J. V., et al. (2011), Remote sensing the vertical profile of cloud droplet effective radius, thermodynamic phase, and temperature, Atmos. Chem. Phys., 11, 9485-9501, doi:10.5194/acp-11-9485-2011.
- Palm, S. P., et al. (2011), Satellite remote sensing of blowing snow properties over Antarctica, J. Geophys. Res., 116, D16123, doi:10.1029/2011JD015828.
- Várnai, T., and A. Marshak (2011), Global CALIPSO Observations of Aerosol Changes Near Clouds, Geosci. Remote Sens. Lett., 8, 19-23, doi:10.1109/LGRS.2010.2049982.
- Yang, Y., et al. (2011), Cloud Impact on Surface Altimetry From a Spaceborne 532-nm Micropulse Photon-Counting Lidar: System Modeling for Cloudy and Clear Atmospheres, IEEE Trans. Geosci. Remote Sens., 49, 4910-4919, doi:10.1109/TGRS.2011.2153860.
- Abdalati, W., et al. (2010), The ICESat-2 Laser Altimetry Mission Planned to launch in 2015, ICEsat-2 will measure changes in polar ice coverage and estimate changes in the Earth’s bio-mass by measuring vegetation canopy height., Proceedings of the IEEE 735, 98, 18-9219, doi:10.1109/JPROC.2009.2034765.
- Alexandrov, M. D., A. Marshak, and A. S. Ackerman (2010), Cellular Statistical Models of Broken Cloud Fields. Part I: Theory, J. Atmos. Sci., 67, 2125-2151, doi:10.1175/2010JAS3364.1.
- Alexandrov, M. D., A. S. Ackerman, and A. Marshak (2010), Cellular Statistical Models of Broken Cloud Fields. Part II: Comparison with a Dynamical Model and Statistics of Diverse Ensembles, J. Atmos. Sci., 67, 2152-2170, doi:10.1175/2010JAS3365.1.
- Chiu, J. C., et al. (2010), Spectrally-invariant behavior of zenith radiance around cloud edges simulated by radiative transfer, Atmos. Chem. Phys., 10, 11295-11303, doi:10.5194/acp-10-11295-2010.
- Davis, A. B., and A. Marshak (2010), Solar radiation transport in the cloudy atmosphere: A 3D perspective on observations and climate impacts, Reports on Progress in Physics, 73, 26801-26870, doi:10.1088/0034-4885/73/2/026801.
- Lyapustin, A., et al. (2010), Analysis of snow bidirectional reflectance from ARCTAS Spring-2008 Campaign, Atmos. Chem. Phys., 10, 4359-4375, doi:10.5194/acp-10-4359-2010.
- Yang, Y., et al. (2010), Uncertainties in Ice-Sheet Altimetry From a Spaceborne 1064-nm Single-Channel Lidar Due to Undetected Thin Clouds, IEEE Trans. Geosci. Remote Sens., 48, 250-259, doi:10.1109/TGRS.2009.2028335.
- Davis, A. B., I. N. Polonsky, and A. Marshak (2009), Space‐Time
Green
Functions
for
Diffusive
Radiation
Transport,
in
Application
to
Active
and
Passive
Cloud
Probing, Light
Scattering
Reviews, 4,
169-292.
- Kato, S., and A. Marshak (2009), Solar zenith and viewing geometry-dependent errors in satellite retrieved cloud optical thickness: Marine stratocumulus case, J. Geophys. Res., 114, D01202, doi:10.1029/2008JD010579.
- Prigarin, S. M., and A. Marshak (2009), A Simple Stochastic Model for Generating Broken Cloud Optical Depth and Cloud-Top Height Fields, J. Atmos. Sci., 66, 92-104, doi:10.1175/2008JAS2699.1.
- Várnai, T., and A. Marshak (2009), MODIS observations of enhanced clear sky reflectance near clouds, Geophys. Res. Lett., 36, L06807, doi:10.1029/2008GL037089.
- Evans, K. F., A. Marshak, and T. Várnai (2008), The Potential for Improved Boundary Layer Cloud Optical Depth Retrievals from the Multiple Directions of MISR, J. Atmos. Sci., 65, 3179-3196, doi:10.1175/2008JAS2627.1.
- Wen, G., A. Marshak, and B. Cahalan (2008), Importance of molecular Rayleigh scattering in the enhancement of clear sky reflectance in the vicinity of boundary layer cumulus clouds, J. Geophys. Res., 113, D24207, doi:10.1029/2008JD010592.
- Yang, Y., et al. (2008), Retrievals of Thick Cloud Optical Depth from the Geoscience Laser Altimeter System (GLAS) by Calibration of Solar Background Signal, J. Atmos. Sci., 65, 3513-3527, doi:10.1175/2008JAS2744.1.
- Zinner, T., et al. (2008), Remote sensing of cloud sides of deep convection: towards a three-dimensional retrieval of cloud particle size profiles, Atmos. Chem. Phys., 8, 4741-4757, doi:10.5194/acp-8-4741-2008.
- Vant-Hull, B., et al. (2007), The Effects of Scattering Angle and Cumulus Cloud Geometry on Satellite Retrievals of Cloud Droplet Effective Radius, IEEE Trans. Geosci. Remote Sens., 45, 1039-1045, doi:10.1109/TGRS.2006.890416.
- Várnai, T., and A. Marshak (2007), View angle dependence of cloud optical thicknesses retrieved by Moderate Resolution Imaging Spectroradiometer (MODIS), J. Geophys. Res., 112, D06203, doi:10.1029/2005JD006912.
- Wen, G., et al. (2007), 3-D aerosol-cloud radiative interaction observed in collocated MODIS and ASTER images of cumulus cloud fields, J. Geophys. Res., 112, D13204, doi:10.1029/2006JD008267.
- Chiu, J. C., et al. (2006), Remote sensing of cloud properties using ground-based measurements of zenith radiance, J. Geophys. Res., 111, D16201, doi:10.1029/2005JD006843.
- Wen, G., A. Marshak, and B. Cahalan (2006), Impact of 3-D Clouds on Clear-Sky Reflectance and Aerosol Retrieval in a Biomass Burning Region of Brazil, IEEE Geosci. Remote Sens. Lett., 3, 169-172, doi:10.1109/LGRS.2005.861386.
- Cahalan, B., et al. (2005), The I3RC: Bringing Together the Most Advanced Radiative Transfer Tools for Cloudy Atmospheres, Bull. Am. Meteorol. Soc., 1275-1293, doi:10.1175/BAMS-86-9-1275.
- Knyazikhin, Y., et al. (2005), Small-Scale Drop Size Variability: Impact on Estimation of Cloud Optical Properties, J. Atmos. Sci., 62, 2555-2567.
- Alexandrov, M. D., et al. (2004), Scaling Properties of Aerosol Optical Thickness Retrieved from Ground-Based Measurements, J. Atmos. Sci., 61, 1024-1039.
- Alexandrov, M. D., et al. (2004), Automated cloud screening algorithm for MFRSR data, Geophys. Res. Lett., 31, L04118, doi:10.1029/2003GL019105.
- Davis, A. B., and A. Marshak (2004), Photon propagation in heterogeneous optical media with spatial correlations: enhanced mean-free-paths and wider-than-exponential free-path distributions, J. Quant. Spectrosc. Radiat. Transfer, 84, 3-34, doi:10.1016/S0022-4073.
- Várnai, T., and A. Marshak (2003), A method for analyzing how various parts of clouds influence each other’s brightness, J. Geophys. Res., 108, 4706, doi:10.1029/2003JD003561.
- Barker, H. W., et al. (2002), Inference of Cloud Optical Depth from Aircraft-Based Solar Radiometric Measurements, J. Atmos. Sci., 59, 2093-2111.
- Davis, A. B., and A. Marshak (2002), Space–Time Characteristics of Light Transmitted through Dense Clouds: A Green’s Function Analysis, J. Atmos. Sci., 59, 2713-2727, doi:10.1175/1520-0469(2002)059<2713:STCOLT>2.0.CO;2.
- Knyazikhin, Y., et al. (2002), A Missing Solution to the Transport Equation and Its Effect on Estimation of Cloud Absorptive Properties, J. Atmos. Sci., 59, 3572-3585.
- Várnai, T., and A. Marshak (2002), Observations of Three-Dimensional Radiative Effects that Influence MODIS Cloud Optical Thicknéss Rétrievals, J. Atmos. Sci., 59, 1607-1618.
- Barker, H. W., and A. Marshak (2001), Inferring Optical Depth of Broken Clouds above Green Vegetation Using Surface Solar Radiometric Measurements, J. Atmos. Sci., 58, 2989-3006.
- Davis, A. B., and A. Marshak (2001), Multiple Scattering in Clouds: Insights from Three-Dimensional Diffusion/P1 Theory, Nuclear Science and Engineering, 137, 251-280, doi:10.13182/NSE01-A2190.
- Várnai, T., and A. Marshak (2001), Statistical Analysis of the Uncertainties in Cloud Optical Depth Retrievals Caused by Three-Dimensionál Radíative Effects, J. Atmos. Sci., 58, 1540-1548.
- Oreopoulos, L., et al. (2000), Cloud three-dimensional effects evidenced in Landsat spatial power spectra and autocorrelation functions, J. Geophys. Res., 105, 14777-14788.
Note: Only publications that have been uploaded to the
ESD Publications database are listed here.