Warning message

Member access has been temporarily disabled. Please try again later.
The POSIDON website is undergoing a major upgrade that began Friday, October 11th at 5:00 PM PDT. The new upgraded site will be available no later than Monday, October 21st. Until that time, the current site will be visible but logins are disabled.

Sensitivity of Arctic ozone loss to polar stratospheric cloud volume and...

Douglass, A., R. Stolarski, S. Strahan, and B. C. Polansky (2006), Sensitivity of Arctic ozone loss to polar stratospheric cloud volume and chlorine and bromine loading in a chemistry and transport model, Geophys. Res. Lett., 33, L17809, doi:10.1029/2006GL026492.
Abstract: 

The sensitivity of Arctic ozone loss to polar stratospheric cloud volume (VPSC) and chlorine and bromine loading is explored using chemistry and transport models (CTMs). One simulation uses multi-decadal winds and temperatures from a general circulation model (GCM). Winter polar ozone loss depends on both equivalent effective stratospheric chlorine (EESC) and polar vortex characteristics (temperatures, descent, isolation, polar stratospheric cloud amount). The simulation reproduces a linear relationship between ozone loss and VPSC in agreement with that derived from observations for 1992–2003. The relationship holds for EESC within $85% of its maximum ($1990–2020). For lower EESC the ozone loss varies linearly with EESC unless VPSC $ 0. A second simulation recycles a single year’s winds and temperatures from the GCM so that polar ozone loss depends only on changes in EESC. This simulation shows that ozone loss varies linearly with EESC for the entire EESC range for constant, high VPSC.

PDF of Publication: 
Download from publisher's website.
Research Program: 
Atmospheric Composition Modeling and Analysis Program (ACMAP)
Modeling Analysis and Prediction Program (MAP)