Synonyms: 
WB-57
WB57
Associated content: 

WB-57, ER-2 preparing for engine start.

WB-57, DC-8, ER-2 ready for science flight

WB-57 being pushed into Clamshell Hangar

O3 Photometer - UAS (NOAA)

Ozone (O3) in the lower stratosphere (LS) is responsible for absorbing much of the biologically damaging ultraviolet (UV) radiation from the sunlight, and thus plays a critical role in protecting Earth's environment. By absorbing UV light, O3 heats the surrounding air, leading to the vertical stratification and dynamic stability that define the stratosphere. Halogen species from anthropogenic compounds such as CFCs can cause significant damage to the O3 layer in the LS and have led to the formation of the Antarctic ozone hole. Accurate measurement of O3 in the LS is the first step toward understanding and protecting stratospheric O3. The UAS Ozone Photometer was designed specifically for autonomous, precise, and accurate O3 measurements in the upper troposphere and lower stratosphere (UT/LS) onboard the NASA Global Hawk Unmanned Aircraft System (GH UAS) and other high altitude research platforms such as the ER-2 and WB-57. With a data rate of 2 Hz, the instrument can provide high-time-resolution, detailed information for studies of O3 photochemistry, radiation balance, stratosphere-troposphere exchange, and air parcel mixing in the UT/LS. Furthermore, its accurate data are useful for satellite retrieval validation.  Contacts: Troy Thornberry, Ru-Shan Gao

Instrument Type: 
Measurements: 
Point(s) of Contact: 

O3 Photometer (NOAA)

Ozone (O3) in the lower stratosphere (LS) is responsible for absorbing much of the biologically damaging ultraviolet (UV) radiation from the sunlight, and thus plays a critical role in protecting Earth's environment. By absorbing UV light, O3 heats the surrounding air, leading to the vertical stratification and dynamic stability that define the stratosphere. Manmade halogen compounds, such as CFCs, cause significant damage to the O3 layer in the LS and lead to the formation of the Antarctic ozone hole. Accurate measurement of O3 in the LS is the first step toward understanding and protecting stratospheric O3. The Ozone Photometer was designed specifically for autonomous, precise, and accurate O3 measurements in the upper troposphere and lower stratosphere (UT/LS). Flown for thousands of hours onboard the NASA ER-2, NASA WB-57, and NSF GV high-altitude aircraft, this instrument has played a key role in improving our understanding of O3 photochemistry in the UT/LS. Furthermore, its accurate data has been used, and continues to be highly sought after, for satellite validation, and studies of radiation balance, stratosphere-troposphere exchange, and air parcel mixing. Contacts: Ru-Shan Gao, David Fahey, Troy Thornberry, Laurel Watts, Steve Ciciora

Instrument Type: 
Measurements: 
Aircraft: 
Gulfstream V - NSF, WB-57 - JSC, Global Hawk - AFRC
Point(s) of Contact: 

Pages

Subscribe to RSS - WB-57 - JSC