Organization:
NASA Langley Research Center
First Author Publications:
Co-Authored Publications:
- Crosbie, E., et al. (2024), Measurement report: Cloud and environmental properties associated with aggregated shallow marine cumulus and cumulus congestus, Atmos. Chem. Phys., doi:10.5194/acp-24-6123-2024.
- Edwards, E., et al. (2024), Sea salt reactivity over the northwest Atlantic: an in-depth look using the airborne ACTIVATE dataset, Atmos. Chem. Phys., doi:10.5194/acp-24-3349-2024.
- Li, X., et al. (2024), Process Modeling of Aerosol‐Cloud Interaction in Summertime Precipitating Shallow Cumulus Over the Western North Atlantic, J. Geophys. Res., 129, e2023JD039489, doi:10.1029/2023JD039489.
- Schlosser, J., et al. (2024), Maximizing the Volume of Collocated Data from Two Coordinated Suborbital Platforms, J. Atmos. Oceanic Technol., 41, 189-201, doi:10.1175/JTECH-D-23-0001.1.
- Zhang, J., et al. (2024), Stratospheric air intrusions promote global-scale new particle formation.Science, Wang, 385, 210-216, doi:10.1126/science.adn2961.
- Brunke, M. A., et al. (2023), Aircraft Observations of Turbulence in Cloudy and Cloud-Free Boundary Layers Over the Western North Atlantic Ocean From ACTIVATE and Implications for the Earth System Model Evaluation and Development, J. Geophys. Res..
- Corral, A., et al. (2023), Environmental Science: Atmospheres View Article Online PAPER View Journal Dimethylamine in cloud water: a case study over, The Author(s). Published by the Royal Society of Chemistry Environ. Sci.: Atmos, 10.1039/D2EA00117A, doi:10.1039/d2ea00117a.
- Ferrare, R., et al. (2023), Airborne HSRL-2 measurements of elevated aerosol depolarization associated with non-spherical sea salt, TYPE Original Research, doi:10.3389/frsen.2023.1143944.
- Li, X., et al. (2023), Large-Eddy Simulations of Marine Boundary Layer Clouds Associated with Cold-Air Outbreaks during the ACTIVATE Campaign. Part II: Aerosol–Meteorology–Cloud Interaction, J. Atmos. Sci., 80, 1025-1045, doi:10.1175/JAS-D-21-0324.1.
- Sorooshian, A., et al. (2023), Spatially coordinated airborne data and complementary products for aerosol, gas, cloud, and meteorological studies: the NASA ACTIVATE dataset, Earth Syst. Sci. Data, 15, 3419-3472, doi:10.5194/essd-15-3419-2023.
- Vömel, H. 1. ✉., et al. (2023), OPEN Dropsonde observations during Data Descriptor the Aerosol Cloud meTeorology Interactions oVer the western ATlantic Experiment, Nature, doi:10.1038/s41597-023-02647-5.
- Zhu, H., et al. (2023), Parameterization of size of organic and secondary inorganic aerosol for efficient representation of global aerosol optical properties, Atmos. Chem. Phys., doi:10.5194/acp-23-5023-2023.
- Corral, A., et al. (2022), Cold Air Outbreaks Promote New Particle Formation Off the U.S. East Coast, Geophys. Res. Lett..
- Dadashazar, H., et al. (2022), Organic enrichment in droplet residual particles relative to out of cloud over the northwestern Atlantic: analysis of airborne ACTIVATE data, Atmos. Chem. Phys., doi:10.5194/acp-22-13897-2022.
- Dadashazar, H., et al. (2022), Analysis of MONARC and ACTIVATE Airborne Aerosol Data for Aerosol-Cloud Interaction Investigations: Efficacy of Stairstepping Flight Legs for Airborne In Situ Sampling, hosseind@arizona.edu (H.D.armin@arizona.edu (A.S., 13, 1242, doi:10.3390/atmos13081242.
- Gryspeerdt, E., et al. (2022), The impact of sampling strategy on the cloud droplet number concentration estimated from satellite data, Atmos. Meas. Tech., doi:10.5194/amt-2021-371.
- Kirschler, S., et al. (2022), Seasonal updraft speeds change cloud droplet number concentrations in low-level clouds over the western North Atlantic, Atmos. Chem. Phys., doi:10.5194/acp-22-8299-2022.
- LeBlanc, S., et al. (2022), Airborne observations during KORUS-AQ show that aerosol optical depths are more spatially self-consistent than aerosol intensive properties, Atmos. Chem. Phys., doi:10.5194/acp-22-11275-2022.
- Sanchez, K., et al. (2022), North Atlantic Ocean SST-gradient-driven variations in aerosol and cloud evolution along Lagrangian cold-air outbreak trajectories, Atmos. Chem. Phys., 22, 2795-2815, doi:10.5194/acp-22-2795-2022.
- Schlosser, J., et al. (2022), Polarimeter + Lidar–Derived Aerosol Particle Number Concentration, Front. Remote Sens., 3, 885332, doi:10.3389/frsen.2022.885332.
- Tornow, F., et al. (2022), Dilution of Boundary Layer Cloud Condensation Nucleus Concentrations by Free Tropospheric Entrainment During Marine Cold Air Outbreaks, Geophys. Res. Lett., 49, e2022GL09844, doi:10.1029/2022GL098444.
- van Diedenhoven, B., et al. (2022), Remote sensing of aerosol water fraction, dry size distribution and soluble fraction using multi-angle, multi-spectral polarimetry, Atmos. Meas. Tech., 15, 7411-7434, doi:10.5194/amt-15-7411-2022.
- Moore, R., et al. (2021), Sizing response of the Ultra-High Sensitivity Aerosol Spectrometer (UHSAS) and Laser Aerosol Spectrometer (LAS) to changes in submicron aerosol composition and refractive index, Atmos. Meas. Tech., 14, 4517-4542, doi:10.5194/amt-14-4517-2021.
- Sanchez, K., et al. (2021), Linking marine phytoplankton emissions, meteorological processes, and downwind particle properties with FLEXPART, Atmos. Chem. Phys., 21, 831-851, doi:10.5194/acp-21-831-2021.
- Wiggins, E. B., et al. (2021), Reconciling assumptions in bottom-up and top-down approaches for estimating aerosol emission rates from wildland fires using observations from FIREX-AQ, J. Geophys. Res., 126, e2021JD035692, doi:10.1029/2021JD035692.
- Crosbie, E., et al. (2020), Coupling an Online Ion Conductivity Measurement with the Particle-into-Liquid Sampler: Evaluation and Modeling Using Laboratory and Field Aerosol Data, Aerosol Sci. Tech., 54, 1542-1555, doi:10.1080/02786826.2020.1795499.
- Sinclair, K., et al. (2020), Observations of Aerosol‐Cloud Interactions During the North Atlantic Aerosol and Marine Ecosystem Study, Geophys. Res. Lett., 47, 1-10, doi:10.1029/2019GL085851.
- Froyd, K., et al. (2019), A new method to quantify mineral dust and other aerosol species from aircraft platforms using single-particle mass spectrometry, Atmos. Meas. Tech., 12, 6209-6239, doi:10.5194/amt-12-6209-2019.
- Schuster, G., et al. (2019), A Laboratory Experiment for the Statistical Evaluation of Aerosol Retrieval (STEAR) Algorithms, Remote Sensing, 11, doi:10.3390/rs11050498.
- Sinclair, K., et al. (2019), Polarimetric retrievals of cloud droplet number concentrations T a,b,⁎ b,c b b,c, Remote Sensing of Environment, 228, 227-240, doi:10.1016/j.rse.2019.04.008.
- Aldhaif, A. M., et al. (2018), Characterization of the Real Part of Dry Aerosol Refractive Index Over North America From the Surface to 12 km, J. Geophys. Res., 123, doi:10.1029/2018JD028504.
- Alexandrov, M. D., et al. (2018), Retrievals of cloud droplet size from the research scanning polarimeter data: T Validation using in situ measurements, Remote Sensing of Environment, 210, 76-95, doi:10.1016/j.rse.2018.03.005.
- Ervens, B., et al. (2018), Is there an aerosol signature of chemical cloud processing?, Atmos. Chem. Phys., 18, 16099-16119, doi:10.5194/acp-18-16099-2018.
- Jean-Paul, J., et al. (2018), Batal: The Balloon Measurement Campaigns of the Asian Tropopause Aerosol Layer, Bull. Am. Meteorol. Soc., 955, doi:10.1175/BAMS-D-17-0014.1.
- Buchard-Marchant, V. J., et al. (2017), The MERRA-2 Aerosol Reanalysis, 1980 Onward. Part II: Evaluation and Case Studies, J. Climate, 30, 6851-6872, doi:10.1175/JCLI-D-16-0613.1.
- Espinosa, W. R., et al. (2017), Retrievals of aerosol optical and microphysical properties from Imaging Polar Nephelometer scattering measurements, Atmos. Meas. Tech., 10, 811-824, doi:10.5194/amt-10-811-2017.
- Perring, A., et al. (2017), In situ measurements of water uptake by black carbon-containing aerosol in wildfire plumes, J. Geophys. Res., 122, 1086-1097, doi:10.1002/2016JD025688.
- Sawamura, P., et al. (2017), c Author(s) 2017. CC-BY 3.0 License. HSRL-2 aerosol optical measurements and microphysical retrievals vs. airborne in situ measurements during DISCOVER-AQ 2013: an intercomparison study, Atmos. Chem. Phys., doi:10.5194/acp-2016-1164.
- Schwarz, J., et al. (2017), Aircraft measurements of black carbon vertical profiles show upper tropospheric variability and stability, Geophys. Res. Lett., 44, doi:10.1002/2016GL071241.
- Sorooshian, A., et al. (2017), Contrasting aerosol refractive index and hygroscopicity in the inflow and outflow of deep convective storms: Analysis of airborne data from DC3, J. Geophys. Res., 122, 4565-4577, doi:10.1002/2017JD026638.
- Beyersdorf, A., et al. (2016), The impacts of aerosol loading, composition, and water uptake on aerosol extinction variability in the Baltimore–Washington, D.C. region, Atmos. Chem. Phys., 16, 1003-1015, doi:10.5194/acp-16-1003-2016.
- Brock, C., et al. (2016), Aerosol optical properties in the southeastern United States in summer – Part 1: Hygroscopic growth, Atmos. Chem. Phys., 16, 4987-5007, doi:10.5194/acp-16-4987-2016.
- Brock, C., et al. (2016), Aerosol optical properties in the southeastern United States in summer – Part 2: Sensitivity of aerosol optical depth to relative humidity and aerosol parameters, Atmos. Chem. Phys., 16, 5009-5019, doi:10.5194/acp-16-5009-2016.
- Corr, C. A., et al. (2016), Observational evidence for the convective transport of dust over the Central United States, J. Geophys. Res., 121, doi:10.1002/2015JD023789.
- Liu, X., et al. (2016), Agricultural fires in the southeastern U.S. during SEAC4RS: Emissions of trace gases and particles and evolution of ozone, reactive nitrogen, and organic aerosol, J. Geophys. Res., 121, 7383-7414, doi:10.1002/2016JD025040.
- Shingler, T., et al. (2016), Airborne characterization of subsaturated aerosol hygroscopicity and dry refractive index from the surface to 6.5km during the SEAC4RS campaign, J. Geophys. Res., 121, 4188-4210, doi:10.1002/2015JD024498.
- Shingler, T., et al. (2016), Ambient observations of hygroscopic growth factor and f(RH) below 1: Case studies from surface and airborne measurements, J. Geophys. Res., 121, doi:10.1002/2016JD025471.
- Yu, P., et al. (2016), Surface dimming by the 2013 Rim Fire simulated by a sectional aerosol model, J. Geophys. Res., 121, 7079-7087, doi:10.1002/2015JD024702.
- Zamora, L., et al. (2016), Aircraft-measured indirect cloud effects from biomass burning smoke in the Arctic and subarctic, Atmos. Chem. Phys., 16, 715-738, doi:10.5194/acp-16-715-2016.
- Forrister, H., et al. (2015), Evolution of brown carbon in wildfire plumes, Geophys. Res. Lett., 42, 4623-4630, doi:10.1002/2015GL063897.
- Liao, J., et al. (2015), Airborne organosulfates measurements over the continental US, J. Geophys. Res., 120, 2990-3005, doi:10.1002/2014JD022378.
- Liu, J., et al. (2015), Brown carbon aerosol in the North American continental troposphere: sources, abundance, and radiative forcing, Atmos. Chem. Phys., 15, 7841-7858, doi:10.5194/acp-15-7841-2015.
- Saide Peralta, et al. (2015), Revealing important nocturnal and day-to-day variations in fire smoke emissions through a multiplatform inversion, Geophys. Res. Lett., 42, 3609-3618, doi:10.1002/2015GL063737.
- Wagner, N. L., et al. (2015), In situ vertical profiles of aerosol extinction, mass, and composition over the southeast United States during SENEX and SEAC4RS: observations of a modest aerosol enhancement aloft, Atmos. Chem. Phys., 15, 7085-7102, doi:10.5194/acp-15-7085-2015.
- Crumeyrolle, S., et al. (2014), Factors that influence surface PM2.5 values inferred from satellite observations: perspective gained for the US Baltimore–Washington metropolitan area during DISCOVER-AQ, Atmos. Chem. Phys., 14, 2139-2153, doi:10.5194/acp-14-2139-2014.
- Duncan, B., et al. (2014), Satellite data of atmospheric pollution for U.S. air quality applications: Examples of applications, summary of data end-user resources, answers to FAQs, and common mistakes to avoid, Atmos. Environ., 94, 647-662, doi:10.1016/j.atmosenv.2014.05.061.
- Liu, J., et al. (2014), Brown carbon in the continental troposphere, Geophys. Res. Lett., 41, 2191-2195, doi:10.1002/2013GL058976.
- Sawamura, P., et al. (2014), Aerosol optical and microphysical retrievals from a hybrid multiwavelength lidar data set – DISCOVER-AQ 2011, Atmos. Meas. Tech., 7, 3095-3112, doi:10.5194/amt-7-3095-2014.
- Schafer, J. S., et al. (2014), Intercomparison of aerosol single-scattering albedo derived from AERONET surface radiometers and LARGE in situ aircraft profiles during the 2011 DRAGON-MD and DISCOVER-AQ experiments, J. Geophys. Res., 119, 7439-7452.
- DeLeon-Rodriguez, N., et al. (2013), Microbiome of the upper troposphere: Species composition and prevalence, effects of tropical storms, and atmospheric implications, Proc. Natl. Acad. Sci., doi:10.1073/pnas.1212089110.
Note: Only publications that have been uploaded to the
ESD Publications database are listed here.