Disclaimer: This material is being kept online for historical purposes. Though accurate at the time of publication, it is no longer being updated. The page may contain broken links or outdated information, and parts may not function in current web browsers. Visit https://espo.nasa.gov for information about our current projects.


Clouds and water vapor in the Northern Hemisphere summertime stratosphere

Dessler, A. (2009), Clouds and water vapor in the Northern Hemisphere summertime stratosphere, J. Geophys. Res., 114, D00H09, doi:10.1029/2009JD012075.

Cloud top observations from the Cloud-Aerosol Lidar Infrared Pathfinder Satellite Observations (CALIPSO) instrument and water vapor measured by the Microwave Limb Sounder (MLS) are used to study the occurrence of clouds in the Northern Hemisphere (NH) summertime lower stratosphere (20°-70°N) and their relation to water vapor. At low latitudes, clouds in the stratosphere tend to occur in regions of intense convection, while at high latitudes, there is little longitudinal preference for the clouds. In general, the 0.1% cloud top occurrence contour tends to be found ~3 km or 40–50 K of potential temperature above the tropopause. At midlatitudes, the occurrence of clouds above the tropopause is associated with enhanced water vapor, suggesting that clouds are associated with moistening events in the lower stratosphere. In the subtropics, the occurrence of clouds is associated with reduced water vapor, suggesting that clouds are associated with dehydration events. Our results are consistent with hydration or dehydration being determined by the local relative humidity. Low relative humidity allows significant evaporation of lofted cloud ice, which is thought to be the key to moistening events. High relative humidity inhibits evaporation of lofted cloud ice and encourages in situ formation of clouds that are thought to play a role in dehydration.

PDF of Publication: 
Download from publisher's website.