Accurately quantifying the timing and magnitude of respiration and photosynthesis by high-latitude ecosystems is important for understanding how a warming climate influences global carbon cycling. Data-driven estimates of photosynthesis across Arctic regions often rely on satellite-derived enhanced vegetation index (EVI); we find that satellite observations of solar-induced chlorophyll fluorescence (SIF) provide a more direct proxy for photosynthesis. We model Alaskan tundra CO2 cycling (2012–2014) according to temperature and shortwave radiation and alternately input EVI or SIF to prescribe the annual seasonal cycle of photosynthesis. We find that EVI-based seasonality indicates spring “green-up” to occur 9 days prior to SIF-based estimates, and that SIF-based estimates agree with aircraft and tower measurements of CO2 . Adopting SIF, instead of EVI, for modeling the seasonal cycle of tundra photosynthesis can result in more accurate estimates of growing season duration and net carbon uptake by arctic vegetation.
Tundra photosynthesis captured by satellite-observed solar-induced chlorophyll fluorescence
Luus, K.A., R. Commane, N. Parazoo, J. Benmergui, E.S. Euskirchen, C. Frankenberg, J. Joiner, J. Lindaas, C.E. Miller, W.C. Oechel, D. Zona, S. Wofsy, and J.C. Lin (2017), Tundra photosynthesis captured by satellite-observed solar-induced chlorophyll fluorescence, Geophys. Res. Lett., 44, 1564-1573, doi:10.1002/2016GL070842.
Abstract
PDF of Publication
Download from publisher's website
Mission
Orbiting Carbon Observatory-2 (OCO-2)
Disclaimer: This material is being kept online for historical purposes. Though accurate at the time of publication, it is no longer being updated. The page may contain broken links or outdated information, and parts may not function in current web browsers. Visit https://espo.nasa.gov for information about our current projects.