P-3 Orion - WFF

Synonyms
P3B
P-3 Orion
NASA P-3B
NASA P-3
NASA-P3B
P-3
P-3B
P3
P3-B
WFF P3-B
NASA P-3 Orion - WFF
Cloud Droplet Probe

The Cloud Droplet Probe (CDP), manufactured by Droplet Measurement Technologies, measures the concentration and size distribution of cloud droplets in the size range from 2-50 µm. The instrument counts and sizes individual droplets by detecting pulses of light scattered from a laser beam in the near-forward direction, using a sample area of 0.24 mm2 or a sample rate of 48 cm3 at a flight speed of 200 m/s. The probe is mounted in an underwing canister and is designed to operate at up to 200 m/s; the G-V often exceeds this flight speed, but usually not in penetrations of clouds containing cloud droplets. Droplet sizes are accumulated in 30 bins with variable sizes, as specied in the header of the netCDF data files. Measurements are usually provided at a rate of 1 Hz in the standard data files but can be made available at 10 Hz in special high-rate processing. The instrument is similar to, and might be considered a high-speed replacement for, the Forward Scattering Spectrometer Probe. At high droplet concentration (> 500 cm-3), coincidence losses have been observed with this probe, and these are especially serious at G-V flight speeds. The probe is designed for cloud droplets, and its response to ice crystals is not intended to be quantitative; measurements in ice clouds should not be used except as qualitative indications of cloud.

Instrument Type
Point(s) of Contact
Langley Wideband Integrated Bioaerosol Sensor

Wideband Integrated Bioaerosol Sensor (WIBS-4A) - Droplet Measurement Technologies.  Dectection of Fluorescent Biological Aerosol Particle (FBAP) number concentrations.  Single particle analysis using dual wavelength (280nm and 370nm by xenon lamps) excitation on two parallel broadband visible-wavelength detectors (310-400nm and 420-650nm). Particles are classified by a combination of fluorescence excitation and emission characteristics, as well as their optical size measured by forward-scattering using a 635nm continuous-wave diode laser.

Instrument Type
Point(s) of Contact
Frequency Modulated Continuous Wave Snow Thickness Radar

The Center for Remote Sensing of Ice Sheets has developed an ultra-wideband radar that operates over the frequency from 2 to 8 GHz to map near-surface internal layers in polar firn with fine vertical resolution. The radar has also been used to measure thickness of snow over sea ice. Information about snow thickness is essential to estimate sea ice thickness from ice freeboard measurements performed with satellite radar and laser altimeters. This radar has been successfully flown on NASA P-3 and DC-8 aircraft.

Instrument Type
Measurements
Point(s) of Contact
Particle Into Liquid Sampler

The Particle Into Liquid Sampler (PILS) was developed for rapid automated on-line and continuous measurement of ambient aerosol bulk composition. The general approach is based on earlier devices in which ambient particles are mixed with saturated water vapor to produce droplets easily collected by inertial techniques. The resulting liquid stream is analyzed with an ion chromatograph to quantitatively measure the bulk aerosol ionic components. In this instrument, a modified version of a particle size magnifier is employed to activate and grow particles comprising the fine aerosol mass. A single jet inertial impactor is used to collect the droplets onto a vertical glass plate that is continually washed with a constant water diluent flow of nominally 0.10 ml min-1. The flow is divided and then analyzed by a dual channel ion chromatograph. In its current form, 4.3 min integrated samples were measured every 7 min. The instrument provides bulk composition measurements with a detection limit of approximately 0.1 µg m-3 for chloride, nitrate, sulfate, sodium, ammonium, calcium, and potassium.

Instrument Type
Measurements
Na,
NH4,
K,
Mg,
Cl,
NO2,
NO3,
SO4,
PO4,
Br-,
Point(s) of Contact
Whole Air Sampler

The UC-Irvine research group collected whole air samples aboard the NASA DC-8 aircraft during the summer 2019 NASA Fire Influence on Regional to Global Environments Experiment - Air Quality (FIREX-AQ) field mission. More than 70 trace gases were identified and quantified at our Irvine laboratory, including C2-C10 NMHCs, C1-C2 halocarbons, C1-C5 alkyl nitrates, and selected sulfur compounds using our established technique of airborne whole air sampling followed by laboratory analysis using gas chromatography (GC) with flame ionization detection (FID), electron capture detection (ECD), and mass spectrometric detection (MSD). Our experimental procedures build on those that have been successfully employed for numerous prior NASA field missions, for example PEM Tropics A and B, TRACE-P, INTEX-A and B, ARCTAS, DC-3, SEAC4RS, ATom, KORUS-AQ, FIREX-AQ, and SARP.

Instrument Type
Point(s) of Contact
Thickness from Offbeam Returns

THOR stands for THickness from Offbeam Returns. This Lidar system is designed to estimate the thickness of clouds by measuring the size of the reflected halo resulting from a laser entering a cloud. A refractive telescope with approximately 7.5-inch (19.05-centimeter) aperture is used to gather the returned light and collect it into a custom designed fiber optic bundle. The fiber optic bundle routes specific sections of the light focused by the telescope into ten Hamamatsu detectors.

Instrument Type
Measurements
Aircraft
Point(s) of Contact
Turbulent Air Motion Measurement System

The TAMMS is composed of several subsystems including: (1) distributed pressure ports coupled with absolute and differential pressure transducers and temperature sensors, (2) aircraft inertial and satellite navigation systems, (3) a central data acquisition/processing system, and (4) water vapor instruments and potentially other trace gas or aerosol sensors.

Instrument Type
Aircraft
Point(s) of Contact
Sea Surface Wind Speed

Estimation of surface wind speed by matching the shape of the reflected GPS signal correlation function against analytical models. Wind speed obtained from this method has agreed with that recorded from buoys with a bias of less than 0.1 m/s, and with a standard deviation of 1.3 m/s.

A modified GPS receiver is used to track the direct line of sight satellites through a zenith-oriented right hand circularly polarized (RHCP) antenna and record the cross-correlation function of the reflected signals using a nadir-oriented left hand circularly polarized (LHCP) antenna. The cross-correlation for one or two satellites is continuously recorded in 10 to 12 range bins. Accumulation is done in hardware for an integration time of 1 ms. Batches of 0.1 seconds of the sum square of the inphase and quadrature components are then averaged before being saved to disk.

Instrument Type
Measurements
Point(s) of Contact