Coupling of Precipitation and Cloud Structures in Oceanic Extratropical...

Wong, S., C. M. Naud, B. Kahn, L. Wu, and E. J. Fetzer (2018), Coupling of Precipitation and Cloud Structures in Oceanic Extratropical Cyclones to Large-Scale Moisture Flux Convergence, J. Climate, 31, 9565-9584, doi:10.1175/JCLI-D-18-0115.1.

Precipitation (from TMPA) and cloud structures (from MODIS) in extratropical cyclones (ETCs) are modulated by phases of large-scale moisture flux convergence (from MERRA-2) in the sectors of ETCs, which are studied in a new coordinate system with directions of both surface warm fronts (WFs) and surface cold fronts (CFs) fixed. The phase of moisture flux convergence is described by moisture dynamical convergence Qcnvg and moisture advection Qadvt. Precipitation and occurrence frequencies of deep convective clouds are sensitive to changes in Qcnvg, while moisture tendency is sensitive to changes in Qadvt. Increasing Qcnvg and Qadvt during the advance of the WF is associated with increasing occurrences of both deep convective and high-level stratiform clouds. A rapid decrease in Qadvt with a relatively steady Qcnvg during the advance of the CF is associated with high-level cloud distribution weighting toward deep convective clouds. Behind the CF (cold sector or area with polar air intrusion), the moisture flux is divergent with abundant lowand midlevel clouds. From deepening to decaying stages, the pre-WF and WF sectors experience high-level clouds shifting to more convective and less stratiform because of decreasing Qadvt with relatively steady Qcnvg, and the CF experiences shifting from high-level to midlevel clouds. Sectors of moisture flux divergence are less influenced by cyclone evolution. Surface evaporation is the largest in the cold sector and the CF during the deepening stage. Deepening cyclones are more efficient in poleward transport of water vapor.

PDF of Publication: 
Download from publisher's website.
Research Program: 
Atmospheric Dynamics and Precipitation Program (ADP)