Organization:
NASA Langley Research Center
Business Address:
Radiation and Climate Branch
Mail Stop 420 NASA Langley Research Center
Hampton, VA 23681
United StatesFirst Author Publications:
- Loeb, N., et al. (2018), Impact of Ice Cloud Microphysics on Satellite Cloud Retrievals and Broadband Flux Radiative Transfer Model Calculations, J. Climate, 31, 1851-1864, doi:10.1175/JCLI-D-17-0426.1.
- Loeb, N., et al. (2007), Variability in global top-of-atmosphere shortwave radiation between 2000 and 2005, Geophys. Res. Lett., 34, L03704, doi:10.1029/2006GL028196.
- Loeb, N., et al. (2007), Multi-Instrument Comparison of Top-of-Atmosphere Reflected Solar Radiation, J. Climate, 20, 575, doi:10.1175/JCLI4018.1.
- Loeb, N., et al. (2006), Fusion of CERES, MISR, and MODIS measurements for top-ofatmosphere radiative flux validation, J. Geophys. Res., 111, D18209, doi:10.1029/2006JD007146.
Co-Authored Publications:
- Ren, T., et al. (2024), On the Consistency of Ice Cloud Optical Models for Spaceborne Remote Sensing Applications and Broadband Radiative Transfer Simulations, J. Geophys. Res..
- Li, D., et al. (2023), On the Scattering-Angle Dependence of the Spectral Consistency of Ice Cloud Optical Thickness Retrievals Based on Geostationary Satellite Observations, IEEE Trans. Geosci. Remote Sens., 61, 4108012, doi:10.1109/TGRS.2023.3331970.
- Saito, M., et al. (2019), An Efficient Method for Microphysical Property Retrievals in Vertically Inhomogeneous Marine Water Clouds Using MODIS‐ CloudSat Measurements, J. Geophys. Res., 124, 2174-2193, doi:10.1029/2018JD029659.
- Chen, X., et al. (2018), Using AIRS and ARM SGP Clear-Sky Observations to Evaluate Meteorological Reanalyses: A Hyperspectral Radiance Closure Approach, J. Geophys. Res., 123, 11,720-11,734, doi:10.1029/2018JD028850.
- Su, W., et al. (2018), Determining the Shortwave Radiative Flux From Earth Polychromatic Imaging Camera, J. Geophys. Res., 123, 11,479-11,491, doi:10.1029/2018JD029390.
- Smith, W., et al. (2017), Arctic Radiation-Icebridge Sea And Ice Experiment: The Arctic Radiant Energy System during the Critical Seasonal Ice Transition, Bull. Am. Meteorol. Soc., 1399-1426, doi:10.1175/BAMS-D-14-00277.1.
- Stackhouse, P., et al. (2016), Earth Radiation Budget at Top-of-Atmosphere [in "State of the Climate in 2015"], Bull. Amer. Meteor. Soc., 97, S41-S43.
- Corbett, J., and N. Loeb (2015), On the relative stability of CERES reflected shortwave and MISR and MODIS visible radiance measurements during the Terra satellite mission, J. Geophys. Res., 120, 11608-11616, doi:10.1002/2015JD023484.
- Stanfield, R. E., et al. (2015), Assessment of NASA GISS CMIP5 and Post-CMIP5 Simulated Clouds and TOA Radiation Budgets Using Satellite Observations. Part II: TOA Radiation Budget and CREs, J. Climate, 28, 1842-1864, doi:10.1175/JCLI-D-14-00249.1.
- Huang, X., et al. (2014), A Global Climatology of Outgoing Longwave Spectral Cloud Radiative Effect and Associated Effective Cloud Properties, J. Climate, 27, 7475-7492, doi:10.1175/JCLI-D-13-00663.1.
- Liu, C., et al. (2014), A two-habit model for the microphysical and optical properties of ice clouds, Atmos. Chem. Phys., 14, 13719-13737, doi:10.5194/acp-14-13719-2014.
- Chen, X. H., et al. (2013), Comparisons of Clear-Sky Outgoing Far-IR Flux Inferred from Satellite Observations and Computed from the Three Most Recent Reanalysis Products, J. Climate, 26, 478-494, doi:10.1175/JCLI-D-12-00212.1.
- Huang, X., et al. (2013), Longwave Band-By-Band Cloud Radiative Effect and Its Application in GCM Evaluation, J. Climate, 26, 450-467, doi:10.1175/JCLI-D-12-00112.1.
- Kato, S., et al. (2013), Surface Irradiances Consistent with CERES-Derived Top-of-Atmosphere Shortwave and Longwave Irradiances, J. Climate, 26, 2719-2740, doi:10.1175/JCLI-D-12-00436.1.
- Li, J.-L. F., et al. (2013), Characterizing and understanding radiation budget biases in CMIP3/CMIP5 GCMs, contemporary GCM, and reanalysis, J. Geophys. Res., 118, 8166-8184, doi:10.1002/jgrd.50378.
- Stackhouse, P., et al. (2013), Earth Radiation Budget at top-of-atmosphere [in "State of the Climate in 2012”], Bull. Am. Meteorol. Soc., 94, S30-31.
- Su, W., et al. (2013), Global all-sky shortwave direct radiative forcing of anthropogenic aerosols from combined satellite observations and GOCART simulations, J. Geophys. Res., 118, 655-669, doi:10.1029/2012JD018294.
- Wen, G., et al. (2013), Improvement of MODIS aerosol retrievals near clouds, J. Geophys. Res., 118, 1-14, doi:10.1002/jgrd.50617.
- Huang, X., N. Loeb, and H. Chuang (2012), Assessing Stability of CERES-FM3 Daytime Longwave Unfiltered Radiance with AIRS Radiances, J. Atmos. Oceanic Technol., 29, 375-381, doi:10.1175/JTECH-D-11-00066.1.
- Kato, S., et al. (2012), Uncertainty Estimate of Surface Irradiances Computed with MODIS-, CALIPSO-, and CloudSat-Derived Cloud and Aerosol Properties, Surv. Geophys., 33, 395-412, doi:10.1007/s10712-012-9179-x.
- Stephens, G. L., et al. (2012), An update on Earth’s energy balance in light of the latest global observations, Nature Geoscience, 5, 691-696, doi:10.1038/NGEO1580.
- Kato, S., et al. (2011), Improvements of top‐of‐atmosphere and surface irradiance computations with CALIPSO‐, CloudSat‐, and MODIS‐derived cloud and aerosol properties, J. Geophys. Res., 116, D19209, doi:10.1029/2011JD016050.
- Smith, G. L. S., et al. (2011), Clouds and Earth Radiant Energy System (CERES), a review: Past, present and future, Advances in Space Research, 48, 254-263, doi:10.1016/j.asr.2011.03.009.
- Huang, X., N. Loeb, and W. Yang (2010), Spectrally resolved fluxes derived from collocated AIRS and CERES measurements and their application in model evaluation: 2. Cloudy sky and band‐by‐band cloud radiative forcing over the tropical oceans, J. Geophys. Res., 115, D21101, doi:10.1029/2010JD013932.
- Lin, B., et al. (2010), Estimations of climate sensitivity based on top-of-atmosphere radiation imbalance, Atmos. Chem. Phys., 10, 1923-1930, doi:10.5194/acp-10-1923-2010.
- Stackhouse, P., et al. (2010), Earth Radiation Budget at Top-of-Atmosphere, Bull. Am. Meteorol. Soc., 91, S41.
- Su, W., et al. (2010), An estimate of aerosol indirect effect from satellite measurements with concurrent meteorological analysis, J. Geophys. Res., 115, D18219, doi:10.1029/2010JD013948.
- Myhre, G., et al. (2009), Modelled radiative forcing of the direct aerosol effect with multi-observation evaluation, Atmos. Chem. Phys., 9, 1365-1392, doi:10.5194/acp-9-1365-2009.
- Marshak, A., et al. (2008), A simple model for the cloud adjacency effect and the apparent bluing of aerosols near clouds, J. Geophys. Res., 113, D14S17, doi:10.1029/2007JD009196.
- Menon, S., et al. (2008), Analyzing signatures of aerosol-cloud interactions from satellite retrievals and the GISS GCM to constrain the aerosol indirect effect, J. Geophys. Res., 113, D14S22, doi:10.1029/2007JD009442.
- Sun, W., et al. (2008), Using CERES Data to Evaluate the Infrared Flux Derived From Diffusivity Approximation, IEEE Geosci. Remote Sens. Lett., 5, 17-20, doi:10.1109/LGRS.2007.905198.
- Kato, S., et al. (2006), Seasonal and interannual variations of top-of-atmosphere irradiance and cloud cover over polar regions derived from the CERES data set, Geophys. Res. Lett., 33, L19804, doi:10.1029/2006GL026685.
- Lee, Y., et al. (2006), Potential nighttime contamination of CERES clear-sky fields of view by optically thin cirrus during the CRYSTAL-FACE campaign, J. Geophys. Res., 111, D09203, doi:10.1029/2005JD006372.
- Sun, W., et al. (2006), Comparison of MISR and CERES top-of-atmosphere albedo, Geophys. Res. Lett., 33, L23810, doi:10.1029/2006GL027958.
- Sun, W., N. Loeb, and P. Yang (2006), On the retrieval of ice cloud particle shapes from POLDER measurements, J. Quant. Spectrosc. Radiat. Transfer, 101, 435-447, doi:10.1016/j.jqsrt.2006.02.071.
- Yu, H., et al. (2006), A review of measurement-based assessments of the aerosol direct radiative effect and forcing, Atmos. Chem. Phys., 6, 613-666, doi:10.5194/acp-6-613-2006.
- Ignatov, A., et al. (2005), Two MODIS Aerosol Products over Ocean on the Terra and Aqua CERES SSF Datasets, J. Atmos. Sci., 62, 1008-1031.
- Sun, W., N. Loeb, and B. Lin (2005), Light scattering by an infinite circular cylinder immersed in an absorbing medium, Appl. Opt., 44, 2338-2342.
- Sun, W., et al. (2005), Finite-difference time-domain solution of light scattering by an infinite dielectric column immersed in an absorbing medium, Appl. Opt., 44, 1977-1983.
- Wielicki, B., et al. (2005), Changes in Earth’s Albedo Measured by Satellite, Science, 308, 825, doi:10.1126/science.1106484.
- Zhang, M. H., et al. (2005), Comparing clouds and their seasonal variations in 10 atmospheric general circulation models with satellite measurements, J. Geophys. Res., 110, D15S02, doi:10.1029/2004JD005021.
- Smith, G. L. S., et al. (2004), Clouds and Earth radiant energy system: an overview, Advances in Space Research, 33, 1125-1133, doi:10.1016/S0273-1177.
- Sun, W., N. Loeb, and S. Kato (2004), Estimation of instantaneous TOA albedo at 670 nm over ice clouds from POLDER multidirectional measurements, J. Geophys. Res., 109, D02210, doi:10.1029/2003JD003801.
- Sun, W., et al. (2004), Examination of surface roughness on light scattering by long ice columns by use of a two-dimensional finite-difference time-domain algorithm, Appl. Opt., 43, 1957-1964.
- Sun, W., et al. (2003), Light scattering by Gaussian particles: a solution with finite-difference time-domain technique, J. Quant. Spectrosc. Radiat. Transfer, 79–80, 79-80, doi:10.1016/S0022-4073.
- Sun, W., N. Loeb, and Q. Fu (2002), Finite-difference time-domain solution of light scattering and absorption by particles in an absorbing medium, Appl. Opt., 41, 5728-5743.
Note: Only publications that have been uploaded to the
ESD Publications database are listed here.