The CAMP2Ex website will be undergoing a major upgrade beginning Friday, October 11th at 5:00 PM PDT. The new upgraded site will be available no later than Monday, October 21st. Please plan to complete any critical activities before or after this time.
Jose Rodriguez
Organization:
NASA Goddard Space Flight Center
Business Address:
Atmospheric Chemistry and Dynamics Branch
Code 614
NASA/Goddard Space Flight Center
Greenbelt, MD 20771
United StatesCo-Authored Publications:
- Choi, H., et al. (2017), Global O3–CO correlations in a chemistry and transport model during July–August: evaluation with TES satellite observations and sensitivity to input meteorological data and emissions, Atmos. Chem. Phys., 17, 8429-8452, doi:10.5194/acp-17-8429-2017.
- Prather, M., et al. (2017), Global atmospheric chemistry – which air matters, Atmos. Chem. Phys., 17, 9081-9102, doi:10.5194/acp-17-9081-2017.
- Liu, H., et al. (2016), Using beryllium-7 to assess cross-tropopause transport in global models, Atmos. Chem. Phys., 16, 4641-4659, doi:10.5194/acp-16-4641-2016.
- Bian, H., et al. (2013), Source attributions of pollution to the Western Arctic during the NASA ARCTAS field campaign, Atmos. Chem. Phys., 13, 4707-4721, doi:10.5194/acp-13-4707-2013.
- Oman, L. D., et al. (2013), The ozone response to ENSO in Aura satellite measurements and a chemistry-climate simulation, J. Geophys. Res., 118, 965-976, doi:10.1029/2012JD018546.
- Liang, Q., et al. (2011), Reactive nitrogen, ozone and ozone production in the Arctic troposphere and the impact of stratosphere-troposphere exchange, Atmos. Chem. Phys., 11, 13181-13199, doi:10.5194/acp-11-13181-2011.
- Bian, H., et al. (2009), Sensitivity of aerosol optical thickness and aerosol direct radiative effect to relative humidity, Atmos. Chem. Phys., 9, 2375-2386, doi:10.5194/acp-9-2375-2009.
- Prather, M., et al. (2008), Quantifying errors in trace species transport modeling, Proc. Natl. Acad. Sci., 105, 19617-19621, doi:10.1073/pnas.0806541106.
- Eyring, V., et al. (2007), Multi-model simulations of the impact of international shipping on Atmospheric Chemistry and Climate in 2000 and 2030, Atmos. Chem. Phys., 7, 757-780, doi:10.5194/acp-7-757-2007.
- Liu, X., et al. (2007), Uncertainties in global aerosol simulations: Assessment using three meteorological data sets, J. Geophys. Res., 112, D11212, doi:10.1029/2006JD008216.
- Dentener, F., et al. (2006), Nitrogen and sulfur deposition on regional and global scales: A multimodel evaluation, Global Biogeochem. Cycles, 20, GB4003, doi:10.1029/2005GB002672.
- Dentener, F., et al. (2006), The Global Atmospheric Environment for the Next Generation, Environ. Sci. Technol., 40, 3586-3594, doi:10.1021/es0523845.
- Shindell, D., et al. (2006), Multimodel simulations of carbon monoxide: Comparison with observations and projected near-future changes, J. Geophys. Res., 111, D19306, doi:10.1029/2006JD007100.
- Stevenson, D. S., et al. (2006), Multimodel ensemble simulations of present-day and near-future tropospheric ozone, J. Geophys. Res., 111, D08301, doi:10.1029/2005JD006338.
- van Noije, T. P. C., et al. (2006), Multi-model ensemble simulations of tropospheric NO2 compared with GOME retrievals for the year 2000, Atmos. Chem. Phys., 6, 2943-2979, doi:10.5194/acp-6-2943-2006.
- Ko, M. K. W., et al. (1989), Implications of AAOE Observations for Proposed Chemical Explanations of the Seasonal and Interannual Behavior of Antarctic Ozone, J. Geophys. Res., 94, 16,705.
Note: Only publications that have been uploaded to the
ESD Publications database are listed here.