Disclaimer: This material is being kept online for historical purposes. Though accurate at the time of publication, it is no longer being updated. The page may contain broken links or outdated information, and parts may not function in current web browsers. Visit https://espo.nasa.gov for information about our current projects.
The atmospheric nitrous oxide mixing ratio has increased by 20% since 1750 (ref. 1). Given that nitrous oxide is both a long-lived greenhouse gas2 and a stratospheric ozonedepleting substance3 , this increase is of global concern. However, the magnitude and geographic distribution of nitrous oxide sources, and how they have changed over time, is uncertain4,5 . A key unknown is the influence of the stratospheric circulation4,5 , which brings air depleted in nitrous oxide to the surface. Here, we report the oxygen and intramolecular nitrogen isotopic compositions of nitrous oxide in firn air samples from Antarctica and archived air samples from Cape Grim, Tasmania, spanning 1940–2005. We detect seasonal cycles in the isotopic composition of nitrous oxide at Cape Grim. The phases and amplitudes of these seasonal cycles allow us to distinguish between the influence of the stratospheric sink and the oceanic source at this site, demonstrating that isotope measurements can help in the attribution and quantification of surface sources in general. Large interannual variations and long-term decreasing trends in isotope composition are also apparent. These longterm trends allow us to distinguish between natural and anthropogenic sources of nitrous oxide, and confirm that the rise in atmospheric nitrous oxide levels is largely the result of an increased reliance on nitrogen-based fertilizers.