Disclaimer: This material is being kept online for historical purposes. Though accurate at the time of publication, it is no longer being updated. The page may contain broken links or outdated information, and parts may not function in current web browsers. Visit https://espo.nasa.gov for information about our current projects.

 

Origin of springtime ozone enhancements in the lower troposphere over Beijing:...

Huang, J., H. Liu, J. Crawford, C. Chan, D. Considine, Y. Zhang, X. Zheng, C. Zhao, V. Thouret, S. Oltmans, S. C. Liu, D. B. Jones, S. Steenrod, and M. Damon (2015), Origin of springtime ozone enhancements in the lower troposphere over Beijing: in situ measurements and model analysis, Atmos. Chem. Phys., 15, 5161-5179, doi:10.5194/acp-15-5161-2015.
Abstract: 

Ozone (O3 ) concentrations in the lower troposphere (LT) over Beijing have significantly increased over the past 2 decades as a result of rapid industrialization in China, with important implications for regional air quality and the photochemistry of the background troposphere. We characterize the vertical distribution of lower-tropospheric (0–6 km) O3 over Beijing using observations from 16 ozonesonde soundings during a field campaign in April–May 2005 and MOZAIC (Measurement of Ozone and Water Vapor by Airbus In-Service Aircraft) over 13 days in the same period. We focus on the origin of LT O3 enhancements observed over Beijing, particularly in May. We use a global 3-D chemistry and transport model (GEOS-Chem CTM; GEOS – Goddard Earth Observing System) driven by assimilated meteorological fields to examine the transport pathways for O3 pollution and to quantify the sources contributing to O3 and its enhancements in the springtime LT over Beijing. Output from the Global Modeling Initiative (GMI) CTM is also used. High O3 concentrations (up to 94.7 ppbv) were frequently observed at the altitude of ∼ 1.5–2 km. The CTMs captured the timing of the occurrences but significantly underestimated their magnitude. GEOS-Chem simulations and a case study showed that O3 produced in the Asian troposphere (especially from Asian anthropogenic pollution) made major contributions to the observed O3 enhancements. Contributions from anthropogenic pollution in the European and North American troposphere were reduced during these events, in contrast with days without O3 enhancements when contributions from Europe and North America were substantial. The O3 enhancements typically occurred under southerly wind and warmer conditions. It is suggested that an earlier onset of the Asian summer monsoon would cause more O3 enhancement events in the LT over the North China Plain in late spring and early summer.

PDF of Publication: 
Download from publisher's website.
Research Program: 
Atmospheric Composition Modeling and Analysis Program (ACMAP)
Modeling Analysis and Prediction Program (MAP)