Warning message

Member access has been temporarily disabled. Please try again later.
The ATTREX website is undergoing a major upgrade that began Friday, October 11th at 5:00 PM PDT. The new upgraded site will be available no later than Monday, October 21st. Until that time, the current site will be visible but logins are disabled.

 

Disclaimer: This material is being kept online for historical purposes. Though accurate at the time of publication, it is no longer being updated. The page may contain broken links or outdated information, and parts may not function in current web browsers. Visit https://espo.nasa.gov for information about our current projects.

 

Synonyms: 
ER-2
Associated content: 
Sub-categories: 

Scanning High-Resolution Interferometer Sounder

The Scanning High-resolution Interferometer Sounder (S-HIS) is a scanning interferometer which measures emitted thermal radiation at high spectral resolution between 3.3 and 18 microns The measured emitted radiance is used to obtain temperature and water vapor profiles of the Earth's atmosphere in clear-sky conditions. S-HIS produces sounding data with 2 kilometer resolution (at nadir) across a 40 kilometer ground swath from a nominal altitude of 20 kilometers onboard a NASA ER-2 or Global Hawk.

Instrument Type: 
Measurements: 
Point(s) of Contact: 

Particle Analysis By Laser Mass Spectrometry

The NOAA PALMS instrument measures single-particle aerosol composition using UV laser ablation to generate ions that are analyzed with a time-of-flight mass spectrometer.  The PALMS size range is approximately 150 to >3000 nm and encompasses most of the accumulation and coarse mode aerosol volume. Individual aerosol particles are classified into compositional classes.  The size-dependent composition data is combined with aerosol counting instruments from Aerosol Microphysical Properties (AMP), the Langley Aerosol Research Group Experiment (LARGE), and other groups to generate quantitative, composition-resolved aerosol concentrations.  Background tropospheric concentrations of climate-relevant aerosol including mineral dust, sea salt, and biomass burning particles are the primary foci for the ATom campaigns.  PALMS also provides a variety of compositional tracers to identify aerosol sources, probe mixing state, track particle aging, and investigate convective transport and cloud processing.

*_Standard data products_**: *

Particle type number fractions: sulfate/organic/nitrate mixtures, biomass burning, EC, sea salt, mineral dust, meteoric, alkali salts, heavy fuel combustion, and other. Sampling times range from 1-5 mins.

*_Advanced data products_**:*

Number, surface area, volume, and mass concentrations of the above particle types. Total sulfate and organic mass concentrations. Relative and absolute abundance of various chemical markers and aerosol sub-components: methanesulfonic acid, sulfate acidity, organic oxidation level, iodine, bromine, organosulfates, pyridine, and other species.

Instrument Type: 
Point(s) of Contact: 

Portable Remote Imaging Spectrometer

The coastal zone is home to a high fraction of humanity and increasingly affected by natural and human-induced events from tsunamis to toxic tidal blooms. Current satellite data provide a broad overview of these events but do not have the necessary spectral, spatial and temporal, resolution to characterize and understand these events.

To address this gap, a compact, lightweight, airborne Portable Remote Imaging SpectroMeter (PRISM) compatible with a wide range of piloted and Uninhabited Aerial Vehicle (UAV) platforms are curently being developed at the Jet Propulsion Laboratory. Operating between the spectral range of 350 nm and 1050 nm, PRISM will offer high temporal resolution and below cloud flight altitudes to resolve spatial features as small as 30 cm. The sensor performance exceeds the state of the art in light throughput, spectral and spatial uniformity, and polarization insensitivity by factors of 2-10, while at the same time extending the spectral range into the ultraviolet. PRISM will also have a two-channel spot radiometer at short-wave infrared (SWIR) band (1240 nm and 1640 nm). It will be in co-alignment with the spectrometer in order to provide accurate atmospheric correction of the ocean color measurements.

The development of the PRISM instrument is supported by NASA Earth Science Division’s the Ocean Biology and Biogeochemistry, Earth Science Technology, and Airborne Sciences programs within NASA’s Earth Science Division.

Instrument Type: 
Point(s) of Contact: 

Frost Point (NOAA)

The NOAA frost point instrument was designed to run unattended under the wing of NASA’s WB-57. An aircraft rated Stirling cooler provides cooling to 100 K. The cooler avoids consumables and provides a large temperature gradient that improves the response time. The vertical pylon houses the optics and provides aerodynamic pumping of the sample volume. At the bottom of the pylon there is a boundary layer plate and a vertical inlet that separates particles larger than 0.2 microns from the sampled air. There are two channels that use blue LEDs and scattered light to detect frost on the mirrors. Diamond mirrors are used for low thermal mass and high conductivity. The two channels are to be used to understand frost characteristics under flight conditions. High flow rates are used to decrease the shear boundary layer to facilitate diffusion through the boundary layer to the mirrors.

Measurements: 
Point(s) of Contact: 

Dual-Beam UV-Absorption Ozone Photometer

The NOAA-O3 instrument consists of a mercury lamp, two sample chambers that can be periodically scrubbed of ozone, and two detectors that measure the 254-nm radiation transmitted through the chamber. The ozone absorption cross-section at this wavelength is accurately known; hence, the ozone number density can be easily calculated. Since the two absorption chambers are identical, virtually continuous measurements of ozone are made by alternating the ambient air sample and ozone scrubbed sample between the two chambers. At a one-second data collection rate, the minimum detectable concentration of ozone (one standard deviation) is 1.5 x 10 10 molecules/cm 3 (0.6ppbv at STP).

Instrument Type: 
Measurements: 
Aircraft: 
Point(s) of Contact: 

Radiometric Measurement System

Optics: We employed very simple optical arrangement for the radiometer. The diffuser-light trap arrangement provides a hemispherical field of view with incident radiation being collimated by the high reflectance walls of the exponential-logarithmic cavity. Enough collimation of the radiation is achieved with this design that narrow spectral bandpass interference filters can be used to select desired wavelength regions.

Electronics: The instrument electronics includes five major functional blocks. They are the detectors signal conditioning block, the data processing block, the system controller block, the shadow ring drive and control block, and the data storage block.

The signal detectors are silicon photodiodes operating in the photovoltaic mode and covering the spectral range from about 0.3 to 1.1µm. Their signals are converted into electrical voltages by low noise FET input operational amplifiers. Programmable gain amplifiers allow adjustments for dynamic range, and filter circuits condition the signals for analog to digital processing. Data processing units consist of an analog multiplexer circuit, a sample-and-hold circuit, and an analog to digital converter providing a 12-bit resolution output. The shadow ring is driven by a DC motor rotating at a constant speed. A motor controller is used to maintain motor speed. The system controller provides the timing necessary to perform all the system's tasks. It sets the shadow ring in motion and steps through the detector's outputs, maintaining the proper dynamic range for the analog to digital converter by selecting the proper amplifier gain. It also controls the analog to digital conversion and selectively stores data.

Instrument Type: 
Measurements: 
Point(s) of Contact: 

Microwave Temperature Profiler

The Microwave Temperature Profiler (MTP) is a passive microwave radiometer, which measures the natural thermal emission from oxygen molecules in the earth’s atmosphere for a selection of elevation angles between zenith and nadir. The current observing frequencies are 55.51, 56.65 and 58.80 GHz. The measured "brightness temperatures" versus elevation angle are converted to air temperature versus altitude using a quasi-Bayesian statistical retrieval procedure. The MTP has no ITAR restrictions, has export compliance classification number EAR99/NLR. An MTP generally consists of two assemblies: a sensor unit (SU), which receives and detects the signal, and a data unit (DU), which controls the SU and records the data. In addition, on some platforms there may be a third element, a real-time analysis computer (RAC), which analyzes the data to produce temperature profiles and other data products in real time. The SU is connected to the DU with power, control, and data cables. In addition the DU has interfaces to the aircraft navigation data bus and the RAC, if one is present. Navigation data is needed so that information such as altitude, pitch and roll are available. Aircraft altitude is needed to perform retrievals (which are altitude dependent), while pitch and roll are needed for controlling the position of a stepper motor which must drive a scanning mirror to predetermined elevation angles. Generally, the feed horn is nearly normal to the flight direction and the scanning mirror is oriented at 45-degrees with respect to receiving feed horn to allow viewing from near nadir to near zenith. At each viewing position a local oscillator (LO) is sequenced through two or more frequencies. Since a double sideband receiver is used, the LO is generally located near the "valley" between two spectral lines, so that the upper and lower sidebands are located near the spectral line peaks to ensure the maximum absorption. This is especially important at high altitudes where "transparency" corrections become important if the lines are too "thin." Because each frequency has a different effective viewing distance, the MTP is able to "see" to different distances by changing frequency. In addition, because the viewing direction is also varied and because the atmospheric opacity is temperature and pressure dependent, different effective viewing distances are also achieved through scanning in elevation . If the scanning is done so that the applicable altitudes (that is, the effective viewing distance times the sine of the elevation angle) at different frequencies and elevation angles are the same, then inter-frequency calibration can also be done, which improves the quality of the retrieved profiles. For a two-frequency radiometer with 10 elevation angles, each 15-second observing cycle produces a set of 20 brightness temperatures, which are converted by a linear retrieval algorithm to a profile of air temperature versus altitude, T(z). Finally, radiometric calibration is performed using the outside air temperature (OAT) and a heated reference target to determine the instrument gain. However, complete calibration of the system to include "window corrections" and other effects, requires tedious analysis and comparison with radiosondes near the aircraft flight path. This is probably the most important single factor contributing to reliable calibration. For stable MTPs, like that on the DC8, such calibrations appear to be reliable for many years. Such analysis is always performed before MTP data are placed on mission archive computers.

Instrument Type: 
Measurements: 
Aircraft: 
DC-8 - AFRC, ER-2 - AFRC, Global Hawk - AFRC, L-188C, M-55, Gulfstream V - NSF, WB-57 - JSC
Point(s) of Contact: 

Research Environment for Vehicle-Embedded Analysis on Linux

Instrument Type: 
Measurements: 
Point(s) of Contact: 

Polarimetric Scanning Radiometer - C/X Band

Remote sensing of soil moisture using C- and X-band microwave frequencies provides less penetration of vegetation and soil probing depth than L-band, but is more amenable to implementation using airborne or spaceborne antennas of practical size. The Japanese AMSR-E imaging radiometer on board the NASA EOS Aqua satellite is one such sensor capable of retrieving soil moisture using a microwave channel at 6.9 GHz with ~75 km spatial resolution. Aqua was launched in May 2002, and will provide a global soil moisture product based on AMSR-E data. The C-band channels on the future NPOESS Conical Microwave Imager and Sounder (CMIS) will provide new operational capabilities for mapping soil moisture. Sea surface temperature is also observable under most cloud conditions using passive microwave C-band radiometry.

To provide airborne mapping capabilities for measuring both soil moisture and sea surface temperature a second operational PSR scanhead was built incorporating fully polarimetric C- and X-band radiometers inside a standard PSR scanhead drum. The C-band radiometer in PSR/CX provides vertically and horizontally polarized measurements within four adjacent subbands at 5.80-6.20, 6.30-6.70, 6.75-7.10, and 7.15-7.50 GHz. In addition, the radiometer provides fully polarimetric measurements at 6.75-7.10 GHz. The use of four subbands and polarimetric capability has provided a unique means of demonstrating and optimizing algorithms for RFI mitigation.

PSR/CX was originally implemented using only a C-band radiometer (as PSR/C) in preparation for SGP99. In preparation for SMEX02 an X-band radiometer was added to provide vertically and horizontally polarized measurements within four bands at 10.60-10.68, 10.68-10.70, 10.70-10.80, and 10.60-10.80 GHz. Fully polarimetric measurements are provided within 10.60-10.80 GHz. The combined dual-band system provides additional information on soil moisture, along with the capability to measure precipitation and the near-surface wind vector over water backgrounds. The X-band channels also provide additional RFI mitigation capability.

Applications of PSR/CX include ocean surface emissivity studies, soil moisture mapping, sea ice mapping, and imaging of heavy precipitation.

Instrument Type: 
Point(s) of Contact: 

Polarimetric Scanning Radiometer - Original Scanhead

The PSR/A scanhead provides either full-Stokes vector or tri-polarimetric sensitivity at the radiometric bands of 10.7, 18.7, and 37 GHz, and thus is well suited for the NPOESS Integrated Program Office’s internal government (IG) studies of ocean surface wind vector measurements. PSR data has been used to demonstrate the first-ever retrieval of ocean surface wind fields using conically-scanned polarimetric radiometer data. The results have suggested that the NPOESS specification for wind vector accuracy will be achievable with a polarimetric two-look system.

Instrument Type: 
Measurements: 
Point(s) of Contact: 

Pages

Subscribe to RSS - ER-2 - AFRC