Organization
Jet Propulsion Laboratory
Email
Business Address
California Institute of Technology
4800 Oak Grove Drive
MS 233-200
Pasadena, CA 91109
United States
Website
First Author Publications
-
Kalashnikova, O.V., et al. (2013), MISR Dark Water aerosol retrievals: operational algorithm sensitivity to particle non-sphericity, Atmos. Meas. Tech., 6, 1-24, doi:10.5194/amt-6-1-2013.
-
Kalashnikova, O.V., et al. (2011), Sensitivity of multi-angle photo-polarimetry to vertical layering and mixing of absorbing aerosols: Quantifying measurement uncertainties, J. Quant. Spectrosc. Radiat. Transfer, 112, 2149-2163, doi:10.1016/j.jqsrt.2011.05.010.
-
Kalashnikova, O.V., and R.A. Kahn (2008), Mineral dust plume evolution over the Atlantic from MISR and MODIS aerosol retrievals, J. Geophys. Res., 113, D24204, doi:10.1029/2008JD010083.
-
Kalashnikova, O.V., et al. (2007), Application of satellite and ground-based data to investigate the UV radiative effects of Australian aerosols, Remote Sensing of Environment, 107, 65-80, doi:10.1016/j.rse.2006.07.025.
-
Kalashnikova, O.V., and R.A. Kahn (2006), Ability of multiangle remote sensing observations to identify and distinguish mineral dust types: 2. Sensitivity over dark water, J. Geophys. Res., 111, D11207, doi:10.1029/2005JD006756.
-
Kalashnikova, O.V., et al. (2005), Ability of multiangle remote sensing observations to identify and distinguish mineral dust types: Optical models and retrievals of optically thick plumes, J. Geophys. Res., 110, D18S14, doi:10.1029/2004JD004550.
Note: Only publications that have been uploaded to the ESD Publications database are listed here.
Co-Authored Publications
-
Hammer, ., et al. (2023), Assessment of the impact of discontinuity in satellite instruments and retrievals on global PM2.5 estimates, Remote Sensing of Environment, 294, 113624, doi:10.1016/j.rse.2023.113624.
-
Warneke, C., et al. (2023), Fire Influence on Regional to Global Environments and Air Quality (FIREX-AQ), J. Geophys. Res., 128, e2022JD037758, doi:10.1029/2022JD037758.
-
Midzak, N., et al. (2022), Constrained Retrievals of Aerosol Optical Properties Using Combined Lidar and Imager Measurements During the FIREX-AQ Campaign, Front. Remote Sens., 3, 818605, doi:10.3389/frsen.2022.818605.
-
Peterson, D.A., et al. (2022), Measurements from inside a Thunderstorm Driven by Wildfire: The 2019 FIREX-AQ Field Experiment, Bull. Amer. Meteor. Soc., 103, E2140-E2167, doi:10.1175/BAMS-D-21-0049.1.
-
van Donkelaar, ., et al. (2022), Monthly Global Estimates of Fine Particulate Matter and Their Uncertainty, Environ. Sci. Technol., doi:10.1021/acs.est.1c05309.
-
Hammer, M.S., et al. (2021), The Authors, some Effects of COVID-19 lockdowns on fine particulate rights reserved; exclusive licensee matter concentrations American Association for the Advancement of Science. No claim to, Hammer et al., Sci. Adv., 7, eabg7670.
-
Li, L., et al. (2021), Quantifying the range of the dust direct radiative effect due to source mineralogy uncertainty, Atmos. Chem. Phys., 21, 3973-4005, doi:10.5194/acp-21-3973-2021.
-
Garay, M.J., et al. (2020), Introducing the 4.4 km spatial resolution Multi-Angle Imaging SpectroRadiometer (MISR) aerosol product, Atmos. Meas. Tech., 13, 593-628, doi:10.5194/amt-13-593-2020.
-
Hammer, M.S., et al. (2020), Improved Global Estimates of Fine Particulate Matter Concentrations and Trends Derived from Updated Satellite Retrievals, Modeling Advances, and Additional Ground-Based Monitors, Environ. Sci. Tech., 54, 7879-7890, doi:10.1021/acs.est.0c01764.
-
Le Kuai, ., et al. (2020), Quantification of Ammonia Emissions With High Spatial Resolution Thermal Infrared Observations From the Hyperspectral Thermal Emission Spectrometer (HyTES) Airborne Instrument, IEEE Journal Of Selected Topics In Applied Earth Observations And Remote Sensing, 1-15, doi:10.1109/JSTARS.2019.2918093.
-
Davis, A.B., and O.V. Kalashnikova (2019), Aerosol Layer Height over Water via Oxygen A-Band Observations from Space: A Tutorial, In: Kokhanovsky A. (eds) Springer Series in Light Scattering. Springer Series in Light Scattering. Springer, 3, 133-166, doi:10.1007/978-3-030-03445-0_4.
-
Frouin, R., et al. (2019), Atmospheric Correction of Satellite Ocean-Color Imagery During the PACE Era, Front. Earth Sci., 7, 145, doi:10.3389/feart.2019.00145.
-
Jamet, C., et al. (2019), Going Beyond Standard Ocean Color Observations: Lidar and Polarimetry, Front. Mar. Sci., 6, 251, doi:10.3389/fmars.2019.00251.
-
Remer, L.A., et al. (2019), Retrieving Aerosol Characteristics From the PACE Mission, Part 1: Ocean Color Instrument, Ocean Color Instrument. Front. Earth Sci., 7, 152, doi:10.3389/feart.2019.00152.
-
Remer, L.A., et al. (2019), Retrieving Aerosol Characteristics From the PACE Mission, Part 2: Multi-Angle and Polarimetry, Multi-Angle and Polarimetry. Front. Environ. Sci., 7, 94, doi:10.3389/fenvs.2019.00094.
-
Yu, H., et al. (2019), Estimates of African Dust Deposition Along the Transā Atlantic Transit Using the Decadelong Record of Aerosol Measurements from CALIOP, MODIS, MISR, and IASI, J. Geophys. Res., 124, 7975-7996, doi:10.1029/2019JD030574.
-
Jovanovic, D.J.D.V., et al. (2018), Advances in multiangle satellite remote sensing of speciated airborne particulate matter and association with adverse health effects: from MISR to MAIA, Terms of Use, 12, 042603, doi:10.1117/1.JRS.12.042603.
-
Wu, L., et al. (2017), WRF-Chem simulation of aerosol seasonal variability in the San Joaquin Valley, Atmos. Chem. Phys., 17, 7291-7309, doi:10.5194/acp-17-7291-2017.
-
Hu, Z., et al. (2016), Trans-Pacific transport and evolution of aerosols: evaluation of quasi-global WRF-Chem simulation with multiple observations, Geosci. Model Dev., 9, 1725-1746, doi:10.5194/gmd-9-1725-2016.
-
Lee, H., et al. (2016), Climatology of the aerosol optical depth by components from the Multi-angle Imaging SpectroRadiometer (MISR) and chemistry transport models, Atmos. Chem. Phys., 16, 6627-6640, doi:10.5194/acp-16-6627-2016.
-
Notaro, Yu.Y.M., et al. (2016), Climatology of summer Shamal wind in the Middle East, J. Geophys. Res., 121, 289-305, doi:10.1002/2015JD024063.
-
Notaro, M., et al. (2015), Regime shift in Arabian dust activity, triggered by persistent Fertile Crescent drought, J. Geophys. Res., 120, 10229-10249, doi:10.1002/2015JD023855.
-
Tosca, M., et al. (2014), Observational evidence of fire-driven reduction of cloud fraction in tropical Africa, J. Geophys. Res., 119, 8418-8432, doi:10.1002/2014JD021759.
-
Banks, J.R., et al. (2013), Intercomparison of satellite dust retrieval products over the west African Sahara during the Fennec campaign in June 2011, Remote Sensing of Environment, 136, 99-116, doi:10.1016/j.rse.2013.05.003.
-
Guo, Y., et al. (2013), Tropical Atlantic dust and smoke aerosol variations related to the Madden-Julian Oscillation in MODIS and MISR observations, J. Geophys. Res., 118, 1-17, doi:10.1002/jgrd.50409.
-
Carboni, E., et al. (2012), Intercomparison of desert dust optical depth from satellite measurements, Atmos. Meas. Tech., 5, 1973-2002, doi:10.5194/amt-5-1973-2012.
-
Yang, W., et al. (2012), CALIPSO observations of transatlantic dust: vertical stratification and effect of clouds, Atmos. Chem. Phys., 12, 11339-11354, doi:10.5194/acp-12-11339-2012.
-
Kahn, R., et al. (2004), Environmental snapshots from ACE-Asia, J. Geophys. Res., 109, D19S14, doi:10.1029/2003JD004339.
-
Kahn, R.A., et al. (2004), Environmental snapshots from ACE-Asia, J. Geophys. Res., 109, D19S14, doi:10.1029/2003JD004339.
Note: Only publications that have been uploaded to the ESD Publications database are listed here.