Organization
NASA Langley Research Center
Email
Business Phone
Work
(757) 864-1406
Mobile
(757) 303-3815
Fax
(757) 864-7790
Business Address
MS401A
Hampton, VA 23681
United States
First Author Publications
-
Hair, J., et al. (2008), Airborne High Spectral Resolution Lidar for Profiling Aerosol Optical Properties, Appl. Opt., 47, doi:10.1364/AO.47.006734.
Note: Only publications that have been uploaded to the ESD Publications database are listed here.
Co-Authored Publications
-
Crosbie, E.C., et al. (2024), Measurement report: Cloud and environmental properties associated with aggregated shallow marine cumulus and cumulus congestus, Atmos. Chem. Phys., doi:10.5194/acp-24-6123-2024.
-
Dmitrovic, S., et al. (2024), High Spectral Resolution Lidar – generation 2 (HSRL-2) retrievals of ocean surface wind speed: methodology and evaluation, Atmos. Meas. Tech., 17, 3515-3532, doi:10.5194/amt-17-3515-2024.
-
Gkatzelis, G., et al. (2024), Parameterizations of US wildfire and prescribed fire emission ratios and emission factors based on FIREX-AQ aircraft measurements, Atmos. Chem. Phys., doi:10.5194/acp-24-929-2024.
-
Gkatzelis, G., et al. (2024), Parameterizations of US wildfire and prescribed fire emission ratios and emission factors based on FIREX-AQ aircraft measurements, Atmos. Chem. Phys., doi:10.5194/acp-24-929-2024.
-
Li, X., et al. (2024), Process Modeling of Aerosol‐Cloud Interaction in Summertime Precipitating Shallow Cumulus Over the Western North Atlantic, J. Geophys. Res., 129, e2023JD039489, doi:10.1029/2023JD039489.
-
Schlosser, J.S., et al. (2024), Maximizing the Volume of Collocated Data from Two Coordinated Suborbital Platforms, J. Atmos. Oceanic Technol., 41, 189-201, doi:10.1175/JTECH-D-23-0001.1.
-
Siu, L.W., et al. (2024), Summarizing multiple aspects of triple collocation analysis in a single diagram, Frontiers in Remote Sensing, 5, 10.3389/frsen.2024.1395442, doi:10.3389/frsen.2024.1395442.
-
Siu, L.W., et al. (2024), Retrievals of aerosol optical depth over the western North Atlantic Ocean during ACTIVATE, Atmos. Meas. Tech., 17, 2739-2759, doi:10.5194/amt-17-2739-2024.
-
Xu, Y., et al. (2024), Boundary Layer Structures Over the Northwest Atlantic Derived From Airborne High Spectral Resolution Lidar and Dropsonde Measurements During the ACTIVATE Campaign, J. Geophys. Res., 129, e2023JD039878, doi:10.1029/2023JD039878.
-
Ferrare, R.A., et al. (2023), Airborne HSRL-2 measurements of elevated aerosol depolarization associated with non-spherical sea salt, TYPE Original Research, doi:10.3389/frsen.2023.1143944.
-
Li, X., et al. (2023), Large-Eddy Simulations of Marine Boundary Layer Clouds Associated with Cold-Air Outbreaks during the ACTIVATE Campaign. Part II: Aerosol–Meteorology–Cloud Interaction, J. Atmos. Sci., 80, 1025-1045, doi:10.1175/JAS-D-21-0324.1.
-
Nied, J., et al. (2023), A cloud detection neural network for above-aircraft clouds using airborne cameras, Frontiers in Remote Sensing, 4, 10.3389/frsen.2023.1118745, doi:10.3389/frsen.2023.1118745.
-
Pagonis, D.J., et al. (2023), Impact of Biomass Burning Organic Aerosol Volatility on Smoke Concentrations Downwind of Fires, Environ. Sci. Technol., 57, 17011-17021, doi:10.1021/acs.est.3c05017.
-
Saide Peralta, P.E., et al. (2023), Understanding the Evolution of Smoke Mass Extinction Efficiency Using Field Campaign Measurements, Geophys. Res. Lett., 49, e2022GL099175, doi:10.1029/2022GL099175.
-
Sorooshian, A., et al. (2023), Spatially coordinated airborne data and complementary products for aerosol, gas, cloud, and meteorological studies: the NASA ACTIVATE dataset, Earth Syst. Sci. Data, 15, 3419-3472, doi:10.5194/essd-15-3419-2023.
-
Tang, Y., et al. (2023), Evaluation of the NAQFC driven by the NOAA Global Forecast System (version 16): comparison with the WRF-CMAQ during the summer 2019 FIREX-AQ campaign, Geosci. Model. Dev., doi:10.5194/gmd-15-7977-2022.
-
Chemyakin, E., et al. (2022), Efficient single-scattering look-up table for lidar and polarimeter water cloud studies, / Optics Letters, 48, 13-16, doi:10.1364/OL.474282.
-
Li, ., et al. (2022), Large-Eddy Simulations of Marine Boundary Layer Clouds Associated with Cold-Air Outbreaks during the ACTIVATE Campaign. Part I: Case Setup and Sensitivities to Large-Scale Forcings, J. Atmos. Sci., 79, 73-100, doi:10.1175/JAS-D-21-0123.1.
-
Noyes, ., et al. (2022), Wildfire Smoke Particle Properties and Evolution, From Space-Based Multi-Angle Imaging II: The Williams Flats Fire during the FIREX-AQ Campaign, doi:10.3390/rs12223823.
-
Peterson, D.A., et al. (2022), Measurements from inside a Thunderstorm Driven by Wildfire: The 2019 FIREX-AQ Field Experiment, Bull. Amer. Meteor. Soc., 103, E2140-E2167, doi:10.1175/BAMS-D-21-0049.1.
-
Saide Peralta, P.E., et al. (2022), Understanding the Evolution of Smoke Mass Extinction Efficiency Using Field Campaign Measurements, Geophys. Res. Lett., 49, e2022GL099175, doi:10.1029/2022GL099175.
-
Sanchez, K., et al. (2022), North Atlantic Ocean SST-gradient-driven variations in aerosol and cloud evolution along Lagrangian cold-air outbreak trajectories, Atmos. Chem. Phys., 22, 2795-2815, doi:10.5194/acp-22-2795-2022.
-
Schlosser, J.S., et al. (2022), Polarimeter + Lidar–Derived Aerosol Particle Number Concentration, Front. Remote Sens., 3, 885332, doi:10.3389/frsen.2022.885332.
-
Tang, W., et al. (2022), Effects of Fire Diurnal Variation and Plume Rise on U.S. Air Quality During FIREX-AQ and WE-CAN Based on the Multi-Scale Infrastructure for Chemistry and Aerosols (MUSICAv0), J. Geophys. Res., 127, e2022JD036650, doi:10.1029/2022JD036650.
-
Wang, S., et al. (2021), Chemical Tomography in a Fresh Wildland Fire Plume: A Large Eddy Simulation (LES) Study, J. Geophys. Res..
-
Wiggins, E.B., et al. (2021), Reconciling assumptions in bottom-up and top-down approaches for estimating aerosol emission rates from wildland fires using observations from FIREX-AQ, J. Geophys. Res., 126, e2021JD035692, doi:10.1029/2021JD035692.
-
Zhai, S., et al. (2021), Relating geostationary satellite measurements of aerosol optical depth (AOD) over East Asia to fine particulate matter (PM2.5): insights from the KORUS-AQ aircraft campaign and GEOS-Chem model simulations, Atmos. Chem. Phys., 21, 16775-16791, doi:10.5194/acp-21-16775-2021.
-
Alexandrov, M.D., et al. (2018), Retrievals of cloud droplet size from the research scanning polarimeter data: T Validation using in situ measurements, Remote Sensing of Environment, 210, 76-95, doi:10.1016/j.rse.2018.03.005.
-
Baker, K.R., et al. (2018), Photochemical model evaluation of 2013 California wild fire air quality impacts using surface, aircraft, and satellite data, Science of the Total Environment, 637–638, 1137-1149, doi:10.1016/j.scitotenv.2018.05.048.
-
Burton, S.P., et al. (2018), Calibration of a high spectral resolution lidar using a Michelson interferometer, with data examples from ORACLES, Appl. Opt., 57, 6061-6075, doi:10.1364/AO.57.006061.
-
Ottaviani, M., et al. (2018), Airborne and shipborne polarimetric measurements over open ocean and T coastal waters: Intercomparisons and implications for spaceborne observations ⁎, Remote Sensing of Environment, 206, 375-390, doi:10.1016/j.rse.2017.12.015.
-
Buchard-Marchant, V.J., et al. (2017), The MERRA-2 Aerosol Reanalysis, 1980 Onward. Part II: Evaluation and Case Studies, J. Climate, 30, 6851-6872, doi:10.1175/JCLI-D-16-0613.1.
-
Shingler, T., et al. (2016), Airborne characterization of subsaturated aerosol hygroscopicity and dry refractive index from the surface to 6.5km during the SEAC4RS campaign, J. Geophys. Res., 121, 4188-4210, doi:10.1002/2015JD024498.
-
Saide Peralta, P.E., et al. (2015), Revealing important nocturnal and day-to-day variations in fire smoke emissions through a multiplatform inversion, Geophys. Res. Lett., 42, 3609-3618, doi:10.1002/2015GL063737.
-
Sawamura, P., et al. (2014), Aerosol optical and microphysical retrievals from a hybrid multiwavelength lidar data set – DISCOVER-AQ 2011, Atmos. Meas. Tech., 7, 3095-3112, doi:10.5194/amt-7-3095-2014.
-
Ryerson, T.B., et al. (2013), The 2010 California Research at the Nexus of Air Quality and Climate Change (CalNex) field study, J. Geophys. Res., 118, 5830-5866, doi:10.1002/jgrd.50331.
-
Shinozuka, Y., et al. (2013), Hyperspectral aerosol optical depths from TCAP flights, J. Geophys. Res., 118, 12,180-12,194, doi:10.1002/2013JD020596.
-
Ziemba, L.D., et al. (2013), Airborne observations of aerosol extinction by in situ and remote-sensing techniques: Evaluation of particle hygroscopicity, Geophys. Res. Lett., 40, 417-422, doi:10.1029/2012GL054428.
-
Burton, S.P., et al. (2012), Aerosol classification using airborne High Spectral Resolution Lidar measurements – methodology and examples, Atmos. Meas. Tech., 5, 73-98, doi:10.5194/amt-5-73-2012.
-
Dupont, ., et al. (2012), Attribution and evolution of ozone from Asian wild fires using satellite and aircraft measurements during the ARCTAS campaign, Atmos. Chem. Phys., 12, 169-188, doi:10.5194/acp-12-169-2012.
-
Koo, J.-H., et al. (2012), Characteristics of tropospheric ozone depletion events in the Arctic spring: analysis of the ARCTAS, ARCPAC, and ARCIONS measurements and satellite BrO observations, Atmos. Chem. Phys., 12, 9909-9922, doi:10.5194/acp-12-9909-2012.
-
LeBlanc, S., et al. (2012), Spectral aerosol direct radiative forcing from airborne radiative measurements during CalNex and ARCTAS, J. Geophys. Res., 117, D00V20, doi:10.1029/2012JD018106.
-
Ottaviani, M., et al. (2012), Polarimetric retrievals of surface and cirrus clouds properties in the region affected by the Deepwater Horizon oil spill, Remote Sensing of Environment, 121, 389-403, doi:10.1016/j.rse.2012.02.016.
-
Carn, S.A., et al. (2011), In situ measurements of tropospheric volcanic plumes in Ecuador and Colombia during TC4, J. Geophys. Res., 116, D00J24, doi:10.1029/2010JD014718.
-
Fried, A., et al. (2011), Detailed comparisons of airborne formaldehyde measurements with box models during the 2006 INTEX-B and MILAGRO campaigns: potential evidence for significant impacts of unmeasured and multi-generation volatile organic carbon compounds, Atmos. Chem. Phys., 11, 11867-11894, doi:10.5194/acp-11-11867-2011.
-
Kacenelenbogen, M.S., et al. (2011), An accuracy assessment of the CALIOP/CALIPSO version 2/version 3 daytime aerosol extinction product based on a detailed multi-sensor, multi-platform case study, Atmos. Chem. Phys., 11, 3981-4000, doi:10.5194/acp-11-3981-2011.
-
Knobelspiesse, K.D., et al. (2011), Combined retrievals of boreal forest fire aerosol properties with a polarimeter and lidar, Atmos. Chem. Phys., 11, 7045-7067, doi:10.5194/acp-11-7045-2011.
-
Petropavlovskikh, I., et al. (2010), Low‐ozone bubbles observed in the tropical tropopause layer during the TC4 campaign in 2007, J. Geophys. Res., 115, D00J16, doi:10.1029/2009JD012804.
-
Thompson, A.M., et al. (2010), Convective and wave signatures in ozone profiles over the equatorial Americas: Views from TC4 2007 and SHADOZ, J. Geophys. Res., 115, D00J23, doi:10.1029/2009JD012909.
-
Rogers, R.R., et al. (2009), NASA LaRC airborne high spectral resolution lidar aerosol measurements during MILAGRO: observations and validation, Atmos. Chem. Phys., 9, 4811-4826, doi:10.5194/acp-9-4811-2009.
-
Browell, E., et al. (2003), Large-scale ozone and aerosol distributions, air mass characteristics, and ozone fluxes over the western Pacific Ocean in late winter/early spring, J. Geophys. Res., 108, 8805.
Note: Only publications that have been uploaded to the ESD Publications database are listed here.