Organization
University of Wisconsin–Madison
Email
Business Phone
Work
(608) 263-3898
Business Address
Space Science and Engineering Center
University of Wisconsin-Madison
1225 W. Dayton Street
Madison, WI 53706
United States
Website
First Author Publications
-
Baum, B.A., et al. (2012), MODIS Cloud-Top Property Refinements for Collection 6, J. Appl. Meteor. Climat., 51, 1145-1163, doi:10.1175/JAMC-D-11-0203.1.
-
Baum, B.A., et al. (2011), Improvements in Shortwave Bulk Scattering and Absorption Models for the Remote Sensing of Ice Clouds, J. Appl. Meteor. Climat., 50, 1037-1056, doi:10.1175/2010JAMC2608.1.
-
Baum, B.A., et al. (2010), The impact of ice particle roughness on the scattering phase matrix, J. Quant. Spectrosc. Radiat. Transfer, 111, 2534-2549, doi:10.1016/j.jqsrt.2010.07.008.
-
Baum, B.A., et al. (2007), Bulk Scattering Properties for the Remote Sensing of Ice Clouds. Part III: High-Resolution Spectral Models from 100 to 3250 cm-1, J. Appl. Meteor. Climat., 46, 423-434, doi:10.1175/JAM2473.1.
-
Baum, B.A., et al. (2005), Bulk Scattering Properties for the Remote Sensing of Ice Clouds. Part II: Narrowband Models, J. Appl. Meteor., 44, 1896-1911, doi:10.1175/JAM2309.1.
-
Baum, B.A., et al. (2005), Bulk Scattering Properties for the Remote Sensing of Ice Clouds. Part I: Microphysical Data and Models, J. Appl. Meteor., 44, 1885-1895.
-
Baum, B.A., et al. (2003), Nighttime Multilayered Cloud Detection Using MODIS and ARM Data, J. Appl. Meteor., 42, 905-919.
-
Baum, B.A., et al. (2000), Remote sensing of cloud properties using MODIS airborne simulator imagery during SUCCESS II. Cloud thermodynamic phase, J. Geophys. Res., 105, 11781-11792.
-
Baum, B.A., et al. (2000), Remote sensing of cloud properties using MODIS Airborne Simulator imagery during SUCCESS. I. Data and models, J. Geophys. Res., 105, 11,767-11,780.
-
Baum, B.A., and J. Spinhirne (2000), Remote sensing of cloud properties using MODIS Airborne Simulator imagery during SUCCESS. III. Cloud overlap, J. Geophys. Res., 105, 11,793-11,804.
-
Baum, B.A., and . Trepte (1999), A grouped threshold method for discrimination of smoke, fire, and snow from clouds in daytime AVHRR data, J. Atmos. Ocea. Tech., 16, 793-800.
Note: Only publications that have been uploaded to the ESD Publications database are listed here.
Co-Authored Publications
-
Borbas, E., et al. (2021), Improvement in tropospheric moisture retrievals from VIIRS through the use of infrared absorption bands constructed from VIIRS and CrIS data fusion, Atmos. Meas. Tech., 14, 1191-1203, doi:10.5194/amt-14-1191-2021.
-
Li, Y., et al. (2020), Improvement in cloud retrievals from VIIRS through the use of infrared absorption channels constructed from VIIRS+CrIS data fusion, Atmos. Meas. Tech., 13, 4035-4049, doi:10.5194/amt-13-4035-2020.
-
Wang, Y., et al. (2019), Ice Cloud Optical Thickness, Effective Radius, And Ice Water Path Inferred From Fused MISR and MODIS Measurements Based on a Pixel‐Level Optimal Ice Particle Roughness Model, J. Geophys. Res., 124, doi:10.1029/2019JD030457.
-
Wang, Y., et al. (2018), Inference of an Optimal Ice Particle Model through Latitudinal Analysis of MISR and MODIS Data, doi:10.3390/rs10121981.
-
Yi, B., et al. (2017), A comparison of Aqua MODIS ice and liquid water cloud physical and optical properties between collection 6 and collection 5.1: Pixel-to-pixel comparisons, J. Geophys. Res., 122, 4528-4549, doi:10.1002/2016JD025586.
-
Yi, B., et al. (2017), A comparison of Aqua MODIS ice and liquid water cloud physical and optical properties between collection 6 and collection 5.1: Cloud radiative effects, J. Geophys. Res., 122, 4550-4564, doi:10.1002/2016JD025654.
-
Hioki, S., et al. (2016), Degree of ice particle surface roughness inferred from polarimetric observations, Atmos. Chem. Phys., 16, 7545-7558, doi:10.5194/acp-16-7545-2016.
-
Miller, D., et al. (2016), The impact of cloud vertical profile on liquid water path retrieval based on the bispectral method: A theoretical study based on large-eddy simulations of shallow marine boundary layer clouds, J. Geophys. Res., 121, 4122-4141, doi:10.1002/2015JD024322.
-
Hamann, U., et al. (2014), Remote sensing of cloud top pressure/height from SEVIRI: analysis of ten current retrieval algorithms, Atmos. Meas. Tech., 7, 2839-2867, doi:10.5194/amt-7-2839-2014.
-
Cole, B., et al. (2013), Comparison of PARASOL Observations with Polarized Reflectances Simulated Using Different Ice Habit Mixtures, J. Appl. Meteor. Climat., 52, 186-196, doi:10.1175/JAMC-D-12-097.1.
-
Roebeling, R., et al. (2013), Evaluating And Improving Cloud Parameter Retrievals, Bull. Am. Meteorol. Soc., 94, ES41, doi:10.1175/BAMS-D-12-00041.1.
-
Segal-Rozenhaimer, M., et al. (2013), Retrieval of cirrus properties by Sun photometry: A new perspective on an old issue, J. Geophys. Res., 118, 4503-4520, doi:10.1002/jgrd.50185.
-
Smith, N., et al. (2013), A Uniform Space–Time Gridding Algorithm for Comparison of Satellite Data Products: Characterization and Sensitivity Study, J. Appl. Meteor. Climat., 52, 255-268, doi:10.1175/JAMC-D-12-031.1.
-
Wang, C., et al. (2013), Retrieval of Ice Cloud Properties from AIRS and MODIS Observations Based on a Fast High-Spectral-Resolution Radiative Transfer Model, J. Appl. Meteor. Climat., 52, 710-726, doi:10.1175/JAMC-D-12-020.1.
-
Wang, C., et al. (2013), A fast radiative transfer model for visible through shortwave infrared spectral reflectances in clear and cloudy atmospheres, J. Quant. Spectrosc. Radiat. Transfer, 116, 122-131, doi:10.1016/j.jqsrt.2012.10.012.
-
Yang, P., et al. (2013), Spectrally consistent scattering, absorption, and polarization properties of atmospheric ice crystals at wavelengths from 0.2 µm to 100 µm, J. Atmos. Sci., 70, 330-347, doi:10.1175/JAS-D-12-039.1.
-
van Diedenhoven, B., et al. (2012), Remote sensing of ice crystal asymmetry parameter using multi-directional polarization measurements – Part 1: Methodology and evaluation with simulated measurements, Atmos. Meas. Tech., 5, 2361-2374, doi:10.5194/amt-5-2361-2012.
-
Wang, C., et al. (2012), A new approach to retrieving cirrus cloud height with a combination of MODIS 1.24- and 1.38-micron channels, Geophys. Res. Lett., 39, L24806, doi:10.1029/2012GL053854.
-
Weisz, E., et al. (2012), An Approach for Improving Cirrus Cloud-Top Pressure/Height Estimation by Merging High-Spatial-Resolution Infrared-Window Imager Data with High-Spectral-Resolution Sounder Data, J. Appl. Meteor. Climat., 51, 1477-1488, doi:10.1175/JAMC-D-11-0170.1.
-
Zhou, C., et al. (2012), Study of Horizontally Oriented Ice Crystals with CALIPSO Observations and Comparison with Monte Carlo Radiative Transfer Simulations, J. Appl. Meteor. Climat., 51, 1426-1439, doi:10.1175/JAMC-D-11-0265.1.
-
Chen, X., et al. (2011), An efficient method for computing atmospheric radiances in clear-sky and cloudy conditions, J. Quant. Spectrosc. Radiat. Transfer, 112, 109-118, doi:10.1016/j.jqsrt.2010.08.013.
-
Ding, S., et al. (2011), Validation of the community radiative transfer model, J. Quant. Spectrosc. Radiat. Transfer, 112, 1050-1064, doi:10.1016/j.jqsrt.2010.11.009.
-
Kahn, B., et al. (2011), Impacts of subpixel cloud heterogeneity on infrared thermodynamic phase assessment, J. Geophys. Res., 116, D20201, doi:10.1029/2011JD015774.
-
Wang, C., et al. (2011), Retrieval of Ice Cloud Optical Thickness and Effective Particle Size Using a Fast Infrared Radiative Transfer Model, J. Appl. Meteor. Climat., 50, 2283-2297, doi:10.1175/JAMC-D-11-067.1.
-
Xie, Y., et al. (2011), Simulation of the optical properties of plate aggregates for application to the remote sensing of cirrus clouds, Appl. Opt., 50, 1065-1081.
-
Andrew Heidinger, A.H.A.H., et al. (2010), Using CALIPSO to explore the sensitivity to cirrus height in the infrared observations from NPOESS/VIIRS and GOES‐R/ABI, J. Geophys. Res., 115, D00H20, doi:10.1029/2009JD012152.
-
Hong, G., et al. (2010), Detecting opaque and nonopaque tropical upper tropospheric ice clouds: A trispectral technique based on the MODIS 8–12 micron window bands, J. Geophys. Res., 115, D20214, doi:10.1029/2010JD014004.
-
Kindel, B., et al. (2010), Observations and modeling of ice cloud shortwave spectral albedo during the Tropical Composition, Cloud and Climate Coupling Experiment (TC4), J. Geophys. Res., 115, D00J18, doi:10.1029/2009JD013127.
-
Li, Y., et al. (2010), NOTES AND CORRESPONDENCE Exploration of the MODIS Cloud-Top Property Products for the Investigation of Equatorial Wave Systems, J. Appl. Meteor. Climat., 49, 2050-2057, doi:10.1175/2010JAMC2425.1.
-
Riedi, J., et al. (2010), Cloud thermodynamic phase inferred from merged POLDER and MODIS data, Atmos. Chem. Phys., 10, 11851-11865, doi:10.5194/acp-10-11851-2010.
-
Wind, G., et al. (2010), Multilayer Cloud Detection with the MODIS Near-Infrared Water Vapor Absorption Band, J. Appl. Meteor. Climat., 49, 2315-2333, doi:10.1175/2010JAMC2364.1.
-
Bi, L., et al. (2009), Simulation of the color ratio associated with the backscattering of radiation by ice particles at the wavelengths of 0.532 and 1.064 mm, J. Geophys. Res., 114, D00H08, doi:10.1029/2009JD011759.
-
Ding, S., et al. (2009), Estimates of radiation over clouds and dust aerosols: Optimized number of terms in phase function expansion, J. Quant. Spectrosc. Radiat. Transfer, 110, 1190-1198, doi:10.1016/j.jqsrt.2009.03.032.
-
Garrett, K.J., et al. (2009), Influence of Cloud-Top Height and Geometric Thickness on a MODIS Infrared-Based Ice Cloud Retrieval, J. Appl. Meteor. Climat., 48, 818-832, doi:10.1175/2008JAMC1915.1.
-
Ham, S., et al. (2009), Assessment of the Quality of MODIS Cloud Products from Radiance Simulations, J. Appl. Meteor. Climat., 48, 1591-1612, doi:10.1175/2009JAMC2121.1.
-
Hong, G., et al. (2009), Parameterization of Shortwave and Longwave Radiative Properties of Ice Clouds for Use in Climate Models, J. Climate, 22, 6287-6312, doi:10.1175/2009JCLI2844.1.
-
Hu, Y., et al. (2009), CALIPSO/CALIOP Cloud Phase Discrimination Algorithm, J. Atmos. Oceanic Technol., 26, 2293-2309, doi:10.1175/2009JTECHA1280.1.
-
Zhang, Z., et al. (2009), Influence of ice particle model on satellite ice cloud retrieval: lessons learned from MODIS and POLDER cloud product comparison, Atmos. Chem. Phys., 9, 7115-7129, doi:10.5194/acp-9-7115-2009.
-
Berthier, S., et al. (2008), Comparison of cloud statistics from spaceborne lidar systems, Atmos. Chem. Phys., 8, 6965-6977, doi:10.5194/acp-8-6965-2008.
-
Holz, R.E., et al. (2008), Global Moderate Resolution Imaging Spectroradiometer (MODIS) cloud detection and height evaluation using CALIOP, J. Geophys. Res., 113, D00A19, doi:10.1029/2008JD009837.
-
Hong, G., et al. (2008), Relationship between ice water content and equivalent radar reflectivity for clouds consisting of nonspherical ice particles, J. Geophys. Res., 113, D20205, doi:10.1029/2008JD009890.
-
Menzel, P., et al. (2008), MODIS Global Cloud-Top Pressure and Amount Estimation: Algorithm Description and Results, J. Appl. Meteor. Climat., 47, 1175-1198, doi:10.1175/2007JAMC1705.1.
-
Yang, P., et al. (2008), Effect of Cavities on the Optical Properties of Bullet Rosettes: Implications for Active and Passive Remote Sensing of Ice Cloud Properties, J. Appl. Meteor. Climat., 47, 2311-2330, doi:10.1175/2008JAMC1905.1.
-
Hong, G., et al. (2007), High cloud properties from three years of MODIS Terra and Aqua collection 4 data over the tropics, J. Appl. Meteor. Climat., 46, 1840-1856, doi:10.1175/2007JAMC1583.1.
-
Yang, P., et al. (2007), Differences Between Collection 4 and 5 MODIS Ice Cloud Optical/Microphysical Products and Their Impact on Radiative Forcing Simulations, IEEE Trans. Geosci. Remote Sens., 45, 2886-2899, doi:10.1109/TGRS.2007.898276.
-
Lee, J., et al. (2006), The Influence of Thermodynamic Phase on the Retrieval of Mixed-Phase Cloud Microphysical and Optical Properties in the Visible and Near-Infrared Region, IEEE Geosci. Remote Sens. Lett., 3, 287-291, doi:10.1109/LGRS.2006.864374.
-
Lee, Y., et al. (2006), Potential nighttime contamination of CERES clear-sky fields of view by optically thin cirrus during the CRYSTAL-FACE campaign, J. Geophys. Res., 111, D09203, doi:10.1029/2005JD006372.
-
You, Y., et al. (2006), Sensitivity of depolarized lidar signals to cloud and aerosol particle properties, J. Quant. Spectrosc. Radiat. Transfer, 100, 470-482, doi:10.1016/j.jqsrt.2005.11.058.
-
Yang, P., et al. (2005), Scattering and absorption property database for nonspherical ice particles in the near- through far-infrared spectral region, Appl. Opt., 44, 5512-5523.
-
Nasiri, S., and B.A. Baum (2004), Daytime Multilayered Cloud Detection Using Multispectral Imager Data, J. Atmos. Oceanic Technol., 21, 1145-1155.
-
Platnick, S.E., et al. (2003), The MODIS cloud products: Algorithms and examples From Terra, IEEE Trans. Geosci. Remote Sens., 41, 459-473, doi:10.1109/TGRS.2002.808301.
-
Chameides, W.L., et al. (1990), Observed and Model-Calculated NO2/NO Ratios in Tropospheric Air Sampled During the NASA GTE/CITE-2 Field Study, J. Geophys. Res., 95, 10,235-10.
Note: Only publications that have been uploaded to the ESD Publications database are listed here.