Organization
NASA Langley Research Center
First Author Publications
-
Halliday, H., et al. (2019), Using Short‐Term CO/CO2 Ratios to Assess Air Mass Differences Over the Korean Peninsula During KORUS‐AQ, J. Geophys. Res., 124, 10,951-10,972, doi:10.1029/2018JD029697.
-
Halliday, H., et al. (2019), Reactivity and temporal variability of volatile organic compounds in the Baltimore/DC region in July 2011, J Atmos Chem, 3-18, doi:10.1007/s10874-015-9306-4.
-
Halliday, H., et al. (2016), Atmospheric benzene observations from oil and gas production in the Denver-Julesburg Basin in July and August 2014, J. Geophys. Res., 121, doi:10.1002/2016JD025327.
Note: Only publications that have been uploaded to the ESD Publications database are listed here.
Co-Authored Publications
-
Decker, Z., et al. (2024), Airborne Observations Constrain Heterogeneous Nitrogen and Halogen Chemistry on Tropospheric and Stratospheric Biomass Burning Aerosol, Geophys. Res. Lett., 51, e2023GL107273, doi:10.1029/2023GL107273.
-
Gkatzelis, G., et al. (2024), Parameterizations of US wildfire and prescribed fire emission ratios and emission factors based on FIREX-AQ aircraft measurements, Atmos. Chem. Phys., doi:10.5194/acp-24-929-2024.
-
Gkatzelis, G., et al. (2024), Parameterizations of US wildfire and prescribed fire emission ratios and emission factors based on FIREX-AQ aircraft measurements, Atmos. Chem. Phys., doi:10.5194/acp-24-929-2024.
-
Rickly, P., et al. (2023), Emission factors and evolution of SO2 measured from biomass burning in wildfires and agricultural fires, Atmos. Chem. Phys., doi:10.5194/acp-22-15603-2022.
-
Tomsche, L., et al. (2023), Measurement report: Emission factors of NH3 and NHx for wildfires and agricultural fires in the United States, Atmos. Chem. Phys., doi:10.5194/acp-23-2331-2023.
-
Bourgeois, I., et al. (2022), Comparison of airborne measurements of NO, NO2, HONO, NOy , and CO during FIREX-AQ, Atmos. Meas. Tech., 15, 4901-4930, doi:10.5194/amt-15-4901-2022.
-
Gonzalez, A., et al. (2022), Fossil Versus Nonfossil CO Sources in the US: New Airborne Constraints From ACT-America and GEM, Geophys. Res. Lett..
-
Liao, J., et al. (2022), Formaldehyde evolution in US wildfire plumes during the Fire Influence on Regional to Global Environments and Air Quality experiment (FIREX-AQ), Atmos. Chem. Phys., doi:10.5194/acp-21-18319-2021.
-
Liao, J., et al. (2022), Formaldehyde evolution in US wildfire plumes during the Fire Influence on Regional to Global Environments and Air Quality experiment (FIREX-AQ), Atmos. Chem. Phys., doi:10.5194/acp-21-18319-2021.
-
Peterson, D., et al. (2022), Measurements from inside a Thunderstorm Driven by Wildfire: The 2019 FIREX-AQ Field Experiment, Bull. Amer. Meteor. Soc., 103, E2140-E2167, doi:10.1175/BAMS-D-21-0049.1.
-
Stockwell, C.E., et al. (2022), Airborne Emission Rate Measurements Validate Remote Sensing Observations and Emission Inventories of Western U.S. Wildfires, Environ. Sci. Technol., 56, 7564-7577, doi:10.1021/acs.est.1c07121.
-
Xu, L., et al. (2022), Adv.7, eabl3648 (2021) 8 December 2021SCIENCE ADVANCES, Ozone chemistry in western U.S. wildfire plumes, Xu et al., Sci., 7, eabl3648, doi:10.1126/sciadv.abl3648.
-
Xu, L., et al. (2022), Ozone chemistry in western U.S. wildfire plumes, Science Advances, 7, eabl3648, doi:10.1126/sciadv.abl3648.
-
Decker, Z., et al. (2021), Novel Analysis to Quantify Plume Crosswind Heterogeneity Applied to Biomass Burning Smoke, Environ. Sci. Technol., 55, 15646-15657, doi:10.1021/acs.est.1c03803.
-
Decker, Z., et al. (2021), Nighttime and daytime dark oxidation chemistry in wildfire plumes: an observation and model analysis of FIREX-AQ aircraft data, Atmos. Chem. Phys., 21, 16293-16317, doi:10.5194/acp-21-16293-2021.
-
Liao, J., et al. (2021), Formaldehyde evolution in US wildfire plumes during the Fire Influence on Regional to Global Environments and Air Quality experiment (FIREX-AQ), Atmos. Chem. Phys., doi:10.5194/acp-21-18319-2021.
-
Pagonis, D., et al. (2021), Airborne extractive electrospray mass spectrometry measurements of the chemical composition of organic aerosol, Atmos. Meas. Tech., 14, 1545-1559, doi:10.5194/amt-14-1545-2021.
-
Wiggins, E.B., et al. (2021), Reconciling assumptions in bottom-up and top-down approaches for estimating aerosol emission rates from wildland fires using observations from FIREX-AQ, J. Geophys. Res., 126, e2021JD035692, doi:10.1029/2021JD035692.
-
Jordan, C.E., et al. (2020), Investigation of factors controlling PM2.5 variability across the South Korean Peninsula during KORUS-AQ, variability across the South Korean Peninsula during KORUS-AQ, 8, 28, doi:10.1525/elementa.424.
-
Martins, D., et al. (2013), Ozone correlations between mid-tropospheric partial columns and the near-surface at two mid-atlantic sites during the DISCOVER-AQ campaign in July 2011, J Atmos Chem, 72, 37, doi:10.1007/s10874-013-9259-4.
Note: Only publications that have been uploaded to the ESD Publications database are listed here.