Organization:
NASA Ames Research Center
Business Address:
Atmospheric Science Branch
Earth Science Division
MS 245‐5
Moffett Field, CA 94035-1000
United StatesCo-Authored Publications:
- Decker, Z., et al. (2024), Airborne Observations Constrain Heterogeneous Nitrogen and Halogen Chemistry on Tropospheric and Stratospheric Biomass Burning Aerosol, Geophys. Res. Lett., 51, e2023GL107273, doi:10.1029/2023GL107273.
- Pan, L. L., et al. (2024), East Asian summer monsoon delivers large abundances of very-short-lived organic chlorine substances to the lower stratosphere, Proc. Natl. Acad. Sci., doi:10.1073/pnas.2318716121.
- Cuchiara, G. C., et al. (2023), Effect of Marine and Land Convection on Wet Scavenging of Ozone Precursors Observed During a SEAC 4RS Case Study, J. Geophys. Res..
- June, N. A., et al. (2023), Aerosol size distribution changes in FIREX-AQ biomass burning plumes: the impact of plume concentration on coagulation and OA condensation/evaporation, Atmos. Chem. Phys., doi:10.5194/acp-22-12803-2022.
- Katich, J., et al. (2023), Pyrocumulonimbus affect average stratospheric aerosol composition, Science, 379, 815-820, doi:10.1126/science.add3101.
- Li, Y., et al. (2023), In situ measurements of perturbations to stratospheric aerosol and modeled ozone and radiative impacts following the, Atmos. Chem. Phys., 23, 15351-15364, doi:10.5194/acp-23-15351-2023.
- Yates, E. L., et al. (2023), An extensive database of airborne trace gas and meteorological observations from the Alpha Jet Atmospheric eXperiment (AJAX), Earth Syst. Sci. Data, 15, 2375-2389, doi:10.5194/essd-15-2375-2023.
- Froyd, K., et al. (2022), Dominant role of mineral dust in cirrus cloud formation revealed by global-scale measurements, Nat. Geosci., 15, 177-183, doi:10.1038/s41561-022-00901-w.
- Peterson, D., et al. (2022), Measurements from inside a Thunderstorm Driven by Wildfire: The 2019 FIREX-AQ Field Experiment, Bull. Amer. Meteor. Soc., 103, E2140-E2167, doi:10.1175/BAMS-D-21-0049.1.
- Schwantes, R., et al. (2022), Evaluating the Impact of Chemical Complexity and Horizontal Resolution on Tropospheric Ozone Over the Conterminous US With a Global Variable Resolution Chemistry Model, J. Adv. Modeling Earth Syst., 14, e2021MS002889, doi:10.1029/2021MS002889.
- Stockwell, C. E., et al. (2022), Airborne Emission Rate Measurements Validate Remote Sensing Observations and Emission Inventories of Western U.S. Wildfires, Environ. Sci. Technol., 56, 7564-7577, doi:10.1021/acs.est.1c07121.
- Wolfe, G. M., et al. (2022), Photochemical evolution of the 2013 California Rim Fire: synergistic impacts of reactive hydrocarbons and enhanced oxidants, Atmos. Chem. Phys., doi:10.5194/acp-22-4253-2022.
- Brock, C., et al. (2021), Ambient aerosol properties in the remote atmosphere from global-scale in situ measurements, Atmos. Chem. Phys., 21, 15023-15063, doi:10.5194/acp-21-15023-2021.
- Hintsa, E., et al. (2021), UAS Chromatograph for Atmospheric Trace Species (UCATS) – a versatile instrument for trace gas measurements on airborne platforms, Atmos. Meas. Tech., 14, 6795-6819, doi:10.5194/amt-14-6795-2021.
- Liu, S., et al. (2021), Sea spray aerosol concentration modulated by sea surface temperature, Proc. Natl. Acad. Sci., doi:10.1073/pnas.2020583118.
- Thompson, C., et al. (2021), The NASA Atmospheric Tomography (ATom) Mission: Imaging the Chemistry of the Global Atmosphere, Bull. Am. Meteorol. Soc., doi:10.1175/BAMS-D-20-0315.1.
- Williamson, C., et al. (2021), Large hemispheric difference in nucleation mode aerosol concentrations in the lowermost stratosphere at mid and high latitudes, Atmos. Chem. Phys., 21, 9065-9088, doi:10.5194/acp-21-9065-2021.
- Brune, W. H., et al. (2020), Exploring Oxidation in the Remote Free Troposphere: Insights From Atmospheric Tomography (ATom), J. Geophys. Res., 125, doi:10.1029/2019JD031685.
- Cuchiara, G. C., et al. (2020), Vertical Transport, Entrainment, and Scavenging Processes Affecting Trace Gases in a Modeled and Observed SEAC4RS Case Study, J. Geophys. Res., 125, doi:10.1029/2019JD031957.
- Hannun, R. A., et al. (2020), A cavity-enhanced ultraviolet absorption instrument for high-precision, fast-time-response ozone measurements, Atmos. Meas. Tech., 13, 6877-6887, doi:10.5194/amt-13-6877-2020.
- Straus, A., et al. (2020), The potential role of organics in new particle formation and initial growth in the remote tropical upper troposphere, Atmos. Chem. Phys., 20, 15037-15060, doi:10.5194/acp-20-15037-2020.
- Ryoo, J., et al. (2020), Terrain Trapped Airflows and Precipitation Variability during an Atmospheric River Event, J. Hydrometeorology, 21, 355-375, doi:10.1175/JHM-D-19-0040.1.
- Schwantes, R., et al. (2020), Comprehensive isoprene and terpene gas-phase chemistry improves simulated surface ozone in the southeastern US, Atmos. Chem. Phys., 20, 3739-3776, doi:10.5194/acp-20-3739-2020.
- Spanu, A., et al. (2020), Flow-induced errors in airborne in situ measurements of aerosols and clouds, Atmos. Meas. Tech., 13, 1963-1987, doi:10.5194/amt-13-1963-2020.
- Thames, A., et al. (2020), Missing OH reactivity in the global marine boundary layer, Atmos. Chem. Phys., 20, 4013-4029, doi:10.5194/acp-20-4013-2020.
- Veres, P., et al. (2020), Global airborne sampling reveals a previously unobserved dimethyl sulfide oxidation mechanism in the marine atmosphere, Proc. Natl. Acad. Sci., 117, doi:10.1073/pnas.1919344117.
- Brock, C., et al. (2019), Aerosol size distributions during the Atmospheric Tomography Mission (ATom): methods, uncertainties, and data products, Atmos. Meas. Tech., 12, 3081-3099, doi:10.5194/amt-12-3081-2019.
- Ryoo, J., et al. (2019), Quantification of CO2 and CH4 emissions over Sacramento, California, based on divergence theorem using aircraft measurements, Atmos. Meas. Tech., 12, 2949-2966, doi:10.5194/amt-12-2949-2019.
- Ullrich, R., et al. (2019), Comparison of Modeled and Measured Ice Nucleating Particle Composition in a Cirrus Cloud, J. Atmos. Sci., 76, 1015-1029, doi:10.1175/JAS-D-18-0034.1.
- Williamson, C., et al. (2019), ATom: In Situ Tropical Aerosol Properties and Comparable Global Model Outputs, Ornl Daac, doi:10.3334/ORNLDAAC/1684.
- Williamson, C., et al. (2019), A large source of cloud condensation nuclei from new particle formation in the tropics, Nature, 574, 399-403, doi:10.1038/s41586-019-1638-9.
- Williamson, C. J., et al. (2019), A large source of cloud condensation nuclei from new particle formation in the tropics, Nature, doi:10.1038/s41586-019-1638-9.
- Wolfe, G. M., et al. (2019), Mapping hydroxyl variability throughout the global remote troposphere via synthesis of airborne and satellite formaldehyde observations, Proc. Natl. Acad. Sci., doi:10.1073/pnas.1821661116.
- Wolfe, G. M., et al. (2019), ATom: Column-Integrated Densities of Hydroxyl and Formaldehyde in Remote Troposphere, Ornl Daac, doi:10.3334/ORNLDAAC/1669.
- Jensen, E., et al. (2018), Heterogeneous ice nucleation in the tropical tropopause layer, J. Geophys. Res., doi:10.1029/2018JD028949.
- Katich, J., et al. (2018), ATom: Black Carbon Mass Mixing Ratios from ATom-1 Flights, Ornl Daac, doi:10.3334/ORNLDAAC/1618.
- Katich, J., et al. (2018), Strong Contrast in Remote Black Carbon Aerosol Loadings Between the Atlantic and Pacific Basins, J. Geophys. Res., 123, 13,386-13,395, doi:10.1029/2018JD029206.
- Wofsy, S. C., et al. (2018), ATom: Merged Atmospheric Chemistry, Trace Gases, and Aerosols, Ornl Daac, doi:10.3334/ORNLDAAC/1581.
- Woods, S., et al. (2018), Microphysical Properties of Tropical Tropopause Layer Cirrus, J. Geophys. Res., 123, doi:.org/.
- Herman, R. L., et al. (2017), Enhanced stratospheric water vapor over the summertime continental United States and the role of overshooting convection, Atmos. Chem. Phys., 17, 6113-6124, doi:10.5194/acp-17-6113-2017.
- Jensen, E., et al. (2017), The NASA Airborne Tropical TRopopause EXperiment (ATTREX): High-altitude aircraft measurements in the tropical western Pacific, Bull. Am. Meteorol. Soc., 12/2015, 129-144, doi:10.1175/BAMS-D-14-00263.1.
- Jensen, E., et al. (2017), Physical processes controlling the spatial distributions of relative humidity in the tropical tropopause layer over the Pacific, J. Geophys. Res., 122, 6094-6107, doi:10.1002/2017JD026632.
- Rollins, A., et al. (2017), The role of sulfur dioxide in stratospheric aerosol formation evaluated by using in situ measurements in the tropical lower stratosphere, Geophys. Res. Lett., 44, doi:10.1002/2017GL072754.
- Smith, J. B., et al. (2017), A case study of convectively sourced water vapor observed in the overworld stratosphere over the United States, J. Geophys. Res., 122, 9529-9554, doi:10.1002/2017JD026831.
- Tadic, J. M., et al. (2017), Elliptic Cylinder Airborne Sampling and Geostatistical Mass Balance Approach for Quantifying Local Greenhouse Gas Emissions, Environ. Sci. Technol., 51, 10012-10021, doi:10.1021/acs.est.7b03100.
- Thornberry, T., et al. (2017), Ice water content-extinction relationships and effective diameter for TTL cirrus derived from in situ measurements during ATTREX 2014, J. Geophys. Res., 122, 4494-4507, doi:10.1002/2016JD025948.
- Jensen, E., et al. (2016), High-frequency gravity waves and homogeneous ice nucleation in tropical tropopause layer cirrus, Geophys. Res. Lett., 43, 6629-6635, doi:10.1002/2016GL069426.
- Jensen, E., et al. (2016), On the Susceptibility of Cold Tropical Cirrus to Ice Nuclei Abundance, J. Atmos. Sci., 73, 2445-2464, doi:10.1175/JAS-D-15-0274.1.
- Kim, J., et al. (2016), Ubiquitous influence of waves on tropical high cirrus clouds, Geophys. Res. Lett., 43, 5895-5901, doi:10.1002/2016GL069293.
- Kindel, B. C., et al. (2015), Upper-troposphere and lower-stratosphere water vapor retrievals from the 1400 and 1900 nm water vapor bands, Atmos. Meas. Tech., 8, 1147-1156, doi:10.5194/amt-8-1147-2015.
- Wolfe, G. M., et al. (2015), Quantifying sources and sinks of reactive gases in the lower atmosphere using airborne flux observations, Geophys. Res. Lett., 42, 8231-8240, doi:10.1002/2015GL065839.
- Ueyama, R., et al. (2014), Dehydration in the tropical tropopause layer: A case study for model evaluation using aircraft observations, J. Geophys. Res., 119, 5299-5316, doi:10.1002/2013JD021381.
- Dean-Day, J., T. P. Bui, and C. Chang (2013), An intercomparison of the NASA DC-8 MMS with the NCAR G-V met system and nearby Vaisala GPS radiosondes, DC3 Science Team Meeting, Feb. 25-28, Boulder, CO (submitted).
- Jensen, E., et al. (2013), Ice nucleation and dehydration in the Tropical Tropopause Layer, Proc. Natl. Acad. Sci., doi:10.1073/pnas.1217104110.
- Jensen, E., et al. (2013), Physical processes controlling ice concentrations in synoptically-forced, J. Geophys. Res., 118, 5348-5360, doi:10.1002/jgrd.50421.
- Tuck, A. F., et al. (2013), Molecular velocity distributions and generalized scale invariance in the turbulent atmosphere, Faraday Discussions, 130, 181-193, doi:10.1039/b410551f.
- Jensen, E., L. Pfister, and T. P. Bui (2012), Physical processes controlling ice concentrations in cold cirrus near the tropical tropopause, J. Geophys. Res., 117, D11205, doi:10.1029/2011JD017319.
- Spackman, R., et al. (2011), Seasonal variability of black carbon mass in the tropical tropopause layer, Geophys. Res. Lett., 38, L09803, doi:10.1029/2010GL046343.
- Avery, M., et al. (2010), Convective distribution of tropospheric ozone and tracers in the Central American ITCZ region: Evidence from observations during TC4, J. Geophys. Res., 115, D00J21, doi:10.1029/2009JD013450.
- Davis, S., et al. (2010), In situ and lidar observations of tropopause subvisible cirrus clouds during TC4, J. Geophys. Res., 115, D00J17, doi:10.1029/2009JD013093.
- Jensen, E., et al. (2010), Ice nucleation and cloud microphysical properties in tropical tropopause layer cirrus, Atmos. Chem. Phys., 10, 1369-1384, doi:10.5194/acp-10-1369-2010.
- Park, S., et al. (2010), Vertical transport rates and concentrations of OH and Cl radicals in the Tropical Tropopause Layer from observations of CO2 and halocarbons: implications for distributions of long- and short-lived chemical species, Atmos. Chem. Phys., 10, 6669-6684, doi:10.5194/acp-10-6669-2010.
- Jensen, E., et al. (2009), On the importance of small ice crystals in tropical anvil cirrus, Atmos. Chem. Phys. Discuss., 9, 5321-5370.
- Gao, R., et al. (2008), Calculations of solar shortwave heating rates due to black carbon and ozone absorption using in situ measurements, J. Geophys. Res., 113, D14203, doi:10.1029/2007JD009358.
- Gao, R., et al. (2008), Calculations of solar shortwave heating rates due to black carbon and ozone absorption using in situ measurements, J. Geophys. Res., 113, D14203, doi:10.1029/2007JD009358.
- Jensen, E., et al. (2008), Formation of large ( 100 µm) ice crystals near the tropical tropopause, Atmos. Chem. Phys., 8, 1621-1633, doi:10.5194/acp-8-1621-2008.
- Lawson, P., et al. (2008), Microphysical Properties of subvisible cirrus, Atmos. Chem. Phys., 8, 1609-1620.
- Lawson, P., et al. (2008), Aircraft measurements of microphysical properties of subvisible cirrus in the tropical tropopause layer, Atmos. Chem. Phys., 8, 1609-1620.
- Reeves, M., et al. (2008), Comparison of aerosol extinction coefficients, surface area density, and volume density from SAGE II and in situ aircraft measurements, J. Geophys. Res., 113, D10202, doi:10.1029/2007JD009357.
- Hanisco, T. F., et al. (2007), Observations of deep convective influence on stratospheric water vapor and its isotopic composition, Geophys. Res. Lett., 34, L04814, doi:10.1029/2006GL027899.
- Park, S., et al. (2007), The CO2 tracer clock for the Tropical Tropopause Layer, Atmos. Chem. Phys., 7, 3989-4000, doi:10.5194/acp-7-3989-2007.
- Popp, P., et al. (2007), Condensed-phase nitric acid in a tropical subvisible cirrus cloud, Geophys. Res. Lett., 34, L24812, doi:10.1029/2007GL031832.
- Gao, R., et al. (2006), Measurements of relative humidity in a persistent contrail, Atmos. Environ., 40, 1590-1600, doi:10.1016/j.atmosenv.2005.11.021.
- Garrett, T., et al. (2006), Convective formation of pileus cloud near the tropopause, Atmos. Chem. Phys., 6, 1185-1200, doi:10.5194/acp-6-1185-2006.
- Tripathi, O. P., et al. (2006), High resolution simulation of recent Actic and Antarctic stratospheric chemical ozone loss compared to observations, J. Atmos. Chem., 3, 205-226.
- Canty, T., et al. (2005), Nighttime OClO in the winter Arctic vortex, J. Geophys. Res., 110, D01301, doi:10.1029/2004JD005035.
- Garrett, T., et al. (2005), Evolution of a Florida Cirrus Anvil, J. Atmos. Sci., 62, 2352-2372.
- Jensen, E., et al. (2005), Formation of a Tropopause Cirrus Layer Observed over Florida during CRYSTAL-FACE, J. Geophys. Res., 110, 2005, doi:10.1029/2004JD004671.
- Dhaniyala, S., et al. (2004), Stratospheric Aerosol Sampling: Effect of a Blunt-Body Housing on Inlet Sampling Characteristics, Aerosol Sci. Tech., 38, 1080-1090, doi:10.1080/02786829088581.
- Gao, R., et al. (2004), Evidence That Nitric Acid Increases Relative Humidity in Low-Temperature Cirrus Clouds, Science, 303, 516-520, doi:10.1126/science.1091255.
- Garrett, T., et al. (2004), Convective generation of cirrus near the tropopause, J. Geophys. Res., 109, D21203, doi:10.1029/2004JD004952.
- Jost, H., et al. (2004), In-situ observations of mid-latitude forest fire plumes deep in the stratosphere, Geophys. Res. Lett., 31, L11101, doi:10.1029/2003GL019253.
- Lee, S.-H., et al. (2004), New particle formation observed in the tropical/subtropical cirrus clouds, J. Geophys. Res., 109, D20209, doi:10.1029/2004JD005033.
- McKinney, K. A., et al. (2004), Trajectory studies of large HNO3-containing PSC particles in the Arctic: Evidence for the role of NAT, Geophys. Res. Lett., 31, l05110, doi:10.1029/2003GL018430.
- Popp, P., et al. (2004), Nitric acid uptake on subtropical cirrus cloud particles, J. Geophys. Res., 109, D06302, doi:10.1029/2003JD004255.
- Tuck, A. F., S. J. Hovde, and T. P. Bui (2004), Scale invariance in jet streams: ER-2 data around the lower-stratospheric polar night vortex, Q. J. R. Meteorol. Soc., 130, 2423-2444.
- Brooks, S. D., et al. (2003), Measurements of large stratospheric particles in the Arctic polar vortex, J. Geophys. Res., 108, 4652, doi:10.1029/2002JD003278.
- Drdla, K., et al. (2003), Evidence for the widespread presence of liquid-phase particles during the 1999–2000 Arctic winter, J. Geophys. Res., 108, 8318, doi:10.1029/2001JD001127.
- Herman, R. L., et al. (2003), Hydration, dehydration, and the total hydrogen budget of the 1999/2000 winter Arctic stratosphere, J. Geophys. Res., 108, 8320, doi:10.1029/2001JD001257.
- Greenblatt, J. B., et al. (2002), Defining the polar vortex edge from an N2O potential temperature correlation, J. Geophys. Res., 107, 8268, doi:10.1029/2001JD000575.
- Greenblatt, J. B., et al. (2002), Tracer-based determination of vortex descent in the 1999-2000 Arctic winter, J. Geophys. Res., 107, 8279, doi:10.1029/2001JD000937.
- Hanisco, T. F., et al. (2002), In situ observations of HO2 and OH obtained on the NASA ER-2 in the high-ClO conditions of the 1999/2000 Arctic polar vortex, J. Geophys. Res., 107, 8283, doi:10.1029/2001JD001024.
- Hanisco, T. F., et al. (2002), Quantifying the rate of heterogeneous processing in the Arctic polar vortex with in situ observations of OH, J. Geophys. Res., 107, 8278, doi:10.1029/2000JD000425.
- Jost, H., et al. (2002), Mixing events revealed by anomalous tracer relationships in the Arctic vortex during winter 1999/2000, J. Geophys, Res., 107, 4795, doi:10.1029/2002JD002380.
- Northway, M. J., et al. (2002), An analysis of large HNO3-containing particles sampled in the Arctic stratosphere during the winter of 1999/2000, J. Geophys. Res., 107, 8298, doi:10.1029/2001JD001079.
- Northway, M. J., et al. (2002), Relating inferred HNO3 flux values to the denitrification of the 1999—2000 Arctic vortex, Geophys. Res. Lett., 29, doi:10.1029/2002GL015000.
- Salawitch, R., et al. (2002), Chemical loss of ozone during the Arctic winter of 1999/2000: An analysis based on balloon-borne observations, J. Geophys. Res., 107, doi:10.1029/2001JD000620.
- Fahey, D., et al. (2001), The detection of large HNO3-containing particles in the winter artic stratosphere, Science, 291, 1026-1031.
- Gao, R., et al. (2001), JNO2 at high solar zenith angles in the lower stratosphere, Geophys. Res. Lett., 28, 2405-2408.
- Gao, R., et al. (2001), Observational evidence for the role of denitrification in Arctic stratospheric ozone loss, Geophys. Res. Lett., 28, 2879-2882.
- Heymsfield, G., et al. (2001), ER-2 Doppler radar (EDOP) investigations of the eyewall of Hurricane Bonnie during CAMEX-3, J. Appl. Meteor., 40, 1310-1330.
- Jensen, E. J., et al. (2001), Prevalence of Ice-supersaturated regions in the upper troposphere: Implications for optically thin ice cloud formation, J. Geophys. Res., 106, 17253-17266.
- Lanzendorf, E. J., et al. (2001), Establishing the dependence of [HO2]/[OH] on temperature, halogen loading, O3, and Nox based on in situ measurements from the NASA ER-2, J. Phys. Chem. A, 105, 1535-1542.
- Newman, P., et al. (2001), Chance encounter with a stratospheric kerosene rocket plume from Russia over California, Geophys. Res. Lett., 28, 959-962.
- Perkins, K. K., et al. (2001), The Nox-HNO3 System in the lower stratosphere: Insights from in situ measurements and implications of the JHNO3-[OH] relationship, J. Phys. Chem. A, 105, 1521-1534.
- Pfister, L., et al. (2001), Aircraft observations of thin cirrus clouds near the Tropical Tropopause, J. Geophys. Res., 106, 9765-9786.
- Popp, P., et al. (2001), Severe and extensive denitrification in the 1999-2000 Arctic Winter Stratosphere, Geophys. Res. Lett., 28, 2875-2878.
- Voss, P. B., et al. (2001), Inorganic chlorine partitioning in the summer lower stratosphere: Modeled and measured [ClONO2]/[HCl] during POLARIS, Geophys. Res. Lett., 106, 1713-1732.
- Weinstock, E., et al. (2001), Constraints on the seasonal cycle of stratospheric water vapor using in situ measurements from the ER-2 and a CO photochemical clock, J. Geophys. Res., 106, 22707-22734, doi:2000JD000047.
- Fahey, D., et al. (2000), Ozone destruction and production rates between spring and autumn in the Arctic stratosphere, Geophys. Res. Lett., 27:, 2605-2608.
- Cho, J. Y. N., et al. (1999), Observations of convective and dynamical instabilities in tropopause folds and their contribution to stratosphere-troposphere exchange, J. Geophys. Res., 104, 21549-21568.
- Ferry, G. V., et al. (1999), Effects of aircraft on aerosol abundance in the upper troposphere, Geophys. Res. Lett., 26, 2399-2402.
- Gao, R., et al. (1999), A comparison of observations and model simulations of NOx/NOy in the lower stratosphere, Geophys. Res. Lett., 26, 1153-1156.
- Keim, E. R., et al. (1999), NOy partitioning from measurements of nitrogenand hydrogen radicals in the upper troposphere, Geophys. Res. Lett., 26, 51-54.
- Strawa, A., et al. (1999), Carbonaceous aerosol (Soot) measured in the lower stratosphere during POLARIS and its role in stratospheric chemistry, J. Geophys. Res., 104, 26753-26766.
- Pfister, L., et al. (1993), Gravity Waves Generated by a Tropical Cyclone During the STEP Tropical Field Program: A Case Study, J. Geophys. Res., 98, 8611-8638.
- Chan, R., et al. (1992), "A Case Study of the Mountain Lee Wave Event of January 6, Geophys. Res. Lett., 20, 2551-2554.
- Gaines, S., et al. (1992), Comparisons of the NASA ER-2 Meteorological Measurement System with radar tracking and radiosonde data, J. Atmo. and Oceanic Tech., 9, 210-225.
- Chan, R., et al. (1990), Temperature and Wind Measurements and Model Atmospheres for the 1989 Airborne Arctic Stratospheric Expedition, Geophys. Res. Lett., 17, 341-344.
- Scott, et al. (1990), The Meteorological Measurement System on the NASA ER-2 Aircraft, J. Atmos. Oceanic Technol., 7, 525-540.
- Chan, R., et al. (1989), Temperature and Horizontal Wind Measurements on the ER-2 Aircraft during the 1987 Airborne Antarctic Ozone Experiment, J. Geophys. Res., 94, 11,573-11.
Note: Only publications that have been uploaded to the
ESD Publications database are listed here.