Organization
University of Colorado, Boulder
Email
Business Address
Department of Chemistry and Biochemistry
Boulder, CO 80309-0216
United States
First Author Publications
-
Cubison, M.J., and J.L. Jimenez-Palacios (2015), Statistical precision of the intensities retrieved from constrained fitting of overlapping peaks in high-resolution mass spectra, Atmos. Meas. Tech., 8, 2333-2345, doi:10.5194/amt-8-2333-2015.
-
Cubison, M.J., et al. (2011), Effects of aging on organic aerosol from open biomass burning smoke in aircraft and laboratory studies, Atmos. Chem. Phys., 11, 12049-12064, doi:10.5194/acp-11-12049-2011.
-
Cubison, M.J., et al. (2008), The influence of chemical composition and mixing state of Los Angeles urban aerosol on CCN number and cloud properties, Atmos. Chem. Phys., 8, 5649-5667, doi:10.5194/acp-8-5649-2008.
Note: Only publications that have been uploaded to the ESD Publications database are listed here.
Co-Authored Publications
-
Nault, B.A., et al. (2021), Chemical transport models often underestimate inorganic aerosol acidity in remote regions of the atmosphere, Commun Earth Environ, 2, doi:10.1038/s43247-021-00164-0.
-
Lou, S., et al. (2020), New SOA Treatments Within the Energy Exascale Earth System Model (E3SM): Strong Production and Sinks Govern Atmospheric SOA Distributions and Radiative Forcing, J. Adv. Modeling Earth Syst., 12, e2020MS002266, doi:10.1029/2020MS002266.
-
Nault, B.A., et al. (2020), Interferences with aerosol acidity quantification due to gas-phase ammonia uptake onto acidic sulfate filter samples, Atmos. Meas. Tech., 13, 6193-6213, doi:10.5194/amt-13-6193-2020.
-
Cai, C., et al. (2016), Simulating reactive nitrogen, carbon monoxide, and ozone in California during ARCTAS-CARB 2008 with high wildfire activity, Atmos. Environ., 128, 28-44, doi:10.1016/j.atmosenv.2015.12.031.
-
Ridley, A., et al. (2016), Evaluating model parameterizations of submicron aerosol scattering and absorption with in situ data from ARCTAS 2008 Matthew J. Alvarado1 , Chantelle R. Lonsdale1 , Helen L. Macintyre2,a , Huisheng Bian3,4 , Mian Chin4 , David, Atmos. Chem. Phys., 16, 9435-9455, doi:10.5194/acp-16-9435-2016.
-
Zamora, L.M., et al. (2016), Aircraft-measured indirect cloud effects from biomass burning smoke in the Arctic and subarctic, Atmos. Chem. Phys., 16, 715-738, doi:10.5194/acp-16-715-2016.
-
Howell, S.G., et al. (2014), An airborne assessment of atmospheric particulate emissions from the processing of Athabasca oil sands, Atmos. Chem. Phys., 14, 5073-5087, doi:10.5194/acp-14-5073-2014.
-
Browne, E.C., et al. (2013), Observations of total RONO2 over the boreal forest: NOx sinks and HNO3 sources, Atmos. Chem. Phys., 13, 4543-4562, doi:10.5194/acp-13-4543-2013.
-
Lathem, T.L., et al. (2013), Analysis of CCN activity of Arctic aerosol and Canadian biomass burning during summer 2008, Atmos. Chem. Phys., 13, 2735-2756, doi:10.5194/acp-13-2735-2013.
-
Corr, C.A., et al. (2012), Spectral absorption of biomass burning aerosol determined from retrieved single scattering albedo during ARCTAS, Atmos. Chem. Phys., 12, 10505-10518, doi:10.5194/acp-12-10505-2012.
-
Huang, M., et al. (2012), Sectoral and geographical contributions to summertime continental United States (CONUS) black carbon spatial distributions, Atmos. Environ., 51, 165-174, doi:10.1016/j.atmosenv.2012.01.021.
-
Sahu, ., et al. (2012), Emission characteristics of black carbon in anthropogenic and biomass burning plumes over California during ARCTAS-CARB 2008, J. Geophys. Res., 117, D16302, doi:10.1029/2011JD017401.
-
Fisher, J.A., et al. (2011), Sources, distribution, and acidity of sulfateeammonium aerosol in the Arctic in winterespring, Atmos. Environ., 45, 7301-7318, doi:10.1016/j.atmosenv.2011.08.030.
-
Heald, C.L., et al. (2011), Exploring the vertical profile of atmospheric organic aerosol: comparing 17 aircraft field campaigns with a global model, Atmos. Chem. Phys., 11, 12673-12696, doi:10.5194/acp-11-12673-2011.
-
Hecobian, A., et al. (2011), Comparison of chemical characteristics of 495 biomass burning plumes intercepted by the NASA DC-8 aircraft during the ARCTAS/CARB-2008 field campaign, Atmos. Chem. Phys., 11, 13325-13337, doi:10.5194/acp-11-13325-2011.
-
Huang, M., et al. (2011), Multi-scale modeling study of the source contributions to near-surface ozone and sulfur oxides levels over California during the ARCTAS-CARB period, Atmos. Chem. Phys., 11, 3173-3194, doi:10.5194/acp-11-3173-2011.
-
Kimmel, J.R., et al. (2011), Real-time aerosol mass spectrometry with millisecond resolution, International Journal of Mass Spectrometry, 303, 15-26, doi:10.1016/j.ijms.2010.12.004.
-
Kondo, Y., et al. (2011), Emissions of black carbon, organic, and inorganic aerosols from biomass burning in North America and Asia in 2008, J. Geophys. Res., 116, D08204, doi:10.1029/2010JD015152.
-
Matsui, ., et al. (2011), Accumulation‐mode aerosol number concentrations in the Arctic during the ARCTAS aircraft campaign: Long‐range transport of polluted and clean air from the Asian continent, J. Geophys. Res., 116, D20217, doi:10.1029/2011JD016189.
-
McHaughton, C.S., et al. (2011), Absorbing aerosols in the troposphere of the Western Arctic during the 2008 ACTAS/ARCPAC airborne field campaigns, Atmos. Chem. Phys., 11, 7561-7582, doi:10.5194/acp-11-7515-2011.
-
McNaughton, ., et al. (2011), Absorbing aerosol in the troposphere of the Western Arctic during the 2008 ARCTAS/ARCPAC airborne field campaigns, Atmos. Chem. Phys., 11, 7561-7582, doi:10.5194/acp-11-7561-2011.
-
Wang, Q., et al. (2011), Sources of carbonaceous aerosols and deposited black carbon in the Arctic in winter-spring: implications for radiative forcing, Atmos. Chem. Phys., 11, 12453-12473, doi:10.5194/acp-11-12453-2011.
-
Alvarado, M.J., et al. (2010), Nitrogen oxides and PAN in plumes from boreal fires during ARCTAS-B and their impact on ozone: an integrated analysis of aircraft and satellite observations, Atmos. Chem. Phys., 10, 9739-9760, doi:10.5194/acp-10-9739-2010.
-
Mao, J., et al. (2010), Chemistry of hydrogen oxide radicals (HOx) in the Arctic troposphere in spring, Atmos. Chem. Phys., 10, 5823-5838, doi:10.5194/acp-10-5823-2010.
-
Singh, H.B., et al. (2010), Pollution influences on atmospheric composition and chemistry at high northern latitudes: Boreal and California forest fire emissions, Atmos. Environ., 44, 4553-4564, doi:10.1016/j.atmosenv.2010.08.026.
-
Aiken, A.C., et al. (2009), Mexico City aerosol analysis during MILAGRO using high resolution aerosol mass spectrometry at the urban supersite (T0) – Part 1: Fine particle composition and organic source apportionment, Atmos. Chem. Phys., 9, 6633-6653, doi:10.5194/acp-9-6633-2009.
-
Huffman, J.A., et al. (2009), Chemically-resolved aerosol volatility measurements from two megacity field studies, Atmos. Chem. Phys., 9, 7161-7182, doi:10.5194/acp-9-7161-2009.
-
Huffman, J.A., et al. (2009), Chemically-Resolved Volatility Measurements of Organic Aerosol from Different Sources, Environ. Sci. Technol., 43, 5351-5357, doi:10.1021/es803539d.
-
Jimenez-Palacios, J.L., et al. (2009), Evolution of Organic Aerosols in the Atmosphere, Science, 326, 1525-1529, doi:10.1126/science.1180353.
-
Mohr, C., et al. (2009), Characterization of Primary Organic Aerosol Emissions from Meat Cooking, Trash Burning, and Motor Vehicles with High-Resolution Aerosol Mass Spectrometry and Comparison with Ambient and Chamber Observations, Environ. Sci. Technol., 43, 2443-2449, doi:10.1021/es8011518.
Note: Only publications that have been uploaded to the ESD Publications database are listed here.