Organization
NASA Goddard Space Flight Center
Science Systems and Applications, Inc.
Email
Business Phone
Work
(301) 614-6278
Mobile
(240) 595-0298
Fax
(301) 614-5492
Business Address
NASA Goddard Space Flight Center
Code 612
Greenbelt, MD 20771
United States
Website
First Author Publications
-
Hlavka, D.L., et al. (2012), Airborne validation of cirrus cloud properties derived from CALIPSO lidar measurements: Optical properties, J. Geophys. Res., 117, D09207, doi:10.1029/2011JD017053.
Note: Only publications that have been uploaded to the ESD Publications database are listed here.
Co-Authored Publications
-
Leifer, I., et al. (2020), Air pollution inputs to the Mojave Desert by fusing surface mobile and airborne in situ and airborne and satellite remote sensing: A case study of interbasin transport with numerical model validation, Atmos. Environ., 224, 117184, doi:10.1016/j.atmosenv.2019.117184.
-
Pauly, R., et al. (2019), Cloud-Aerosol Transport System (CATS) 1064 nm calibration and validation, Atmos. Meas. Tech., 12, 6241-6258, doi:10.5194/amt-12-6241-2019.
-
Spencer, R.S., et al. (2019), Exploring Aerosols Near Clouds With High‐Spatial‐ Resolution Aircraft Remote Sensing During SEAC4RS, J. Geophys. Res..
-
Jensen, E.J., et al. (2017), The NASA Airborne Tropical TRopopause EXperiment (ATTREX): High-altitude aircraft measurements in the tropical western Pacific, Bull. Am. Meteorol. Soc., 12/2015, 129-144, doi:10.1175/BAMS-D-14-00263.1.
-
Alexandrov, M.D., et al. (2016), Polarized view of supercooled liquid water clouds, Remote Sensing of Environment, 181, 96-110, doi:10.1016/j.rse.2016.04.002.
-
Kim, J., et al. (2016), Ubiquitous influence of waves on tropical high cirrus clouds, Geophys. Res. Lett., 43, 5895-5901, doi:10.1002/2016GL069293.
-
Yorks, J.E., et al. (2016), An overview of the CATS level 1 processing algorithms and data products, Geophys. Res. Lett., 43, 4632-4639, doi:10.1002/2016GL068006.
-
Alexandrov, M.D., et al. (2015), Liquid water cloud properties during the Polarimeter Definition Experiment (PODEX), Remote Sensing of Environment, 169, 20-36, doi:10.1016/j.rse.2015.07.029.
-
Yorks, J.E., et al. (2014), The Airborne Cloud–Aerosol Transport System: Overview and Description of the Instrument and Retrieval Algorithms, J. Atmos. Oceanic Technol., 31, 2482-2497, doi:10.1175/JTECH-D-14-00044.1.
-
Jensen, E.J., et al. (2013), Ice nucleation and dehydration in the Tropical Tropopause Layer, Proc. Natl. Acad. Sci., doi:10.1073/pnas.1217104110.
-
Minnis, P., et al. (2012), Simulations of Infrared Radiances over a Deep Convective Cloud System Observed during TC4: Potential for Enhancing Nocturnal Ice Cloud Retrievals, Remote Sens., 4, 3022-3054, doi:10.3390/rs4103022.
-
Yorks, J.E., et al. (2011), Airborne validation of cirrus cloud properties derived from CALIPSO lidar measurements: Spatial properties, J. Geophys. Res., 116, D19207, doi:10.1029/2011JD015942.
-
Yorks, J.E., et al. (2011), Statistics of Cloud Optical Properties from Airborne Lidar Measurements, J. Atmos. Oceanic Technol., 28, 869-883, doi:10.1175/2011JTECHA1507.1.
-
Bucholtz, A., et al. (2010), Directly measured heating rates of a tropical subvisible cirrus cloud, J. Geophys. Res., 115, D00J09, doi:10.1029/2009JD013128.
-
Davis, S., et al. (2010), In situ and lidar observations of tropopause subvisible cirrus clouds during TC4, J. Geophys. Res., 115, D00J17, doi:10.1029/2009JD013093.
-
Thompson, A.M., et al. (2010), Convective and wave signatures in ozone profiles over the equatorial Americas: Views from TC4 2007 and SHADOZ, J. Geophys. Res., 115, D00J23, doi:10.1029/2009JD012909.
-
Yost, C.R., et al. (2010), Comparison of GOES‐retrieved and in situ measurements of deep convective anvil cloud microphysical properties during the Tropical Composition, Cloud and Climate Coupling Experiment (TC4), J. Geophys. Res., 115, D00J06, doi:10.1029/2009JD013313.
-
Jensen, E.J., et al. (2009), On the importance of small ice crystals in tropical anvil cirrus, Atmos. Chem. Phys. Discuss., 9, 5321-5370.
-
Yorks, J.E., et al. (2009), Radiative effects of African dust and smoke observed from Clouds and the Earth’s Radiant Energy System (CERES) and Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) data, J. Geophys. Res., 114, D00H04, doi:10.1029/2009JD012000.
-
McGill, M., et al. (2007), Airborne validation of spatial properties measured by the CALIPSO lidar, J. Geophys. Res., 112, D20201, doi:10.1029/2007JD008768.
-
McGill, M., et al. (2004), Combined lidar-radar remote sensing: Initial results from CRYSTAL-FACE, J. Geophys. Res., 109, D07203, doi:10.1029/2003JD004030.
-
Schmid, B., et al. (2003), Coordinated airborne, spaceborne, and ground-based measurements of massive, thick aerosol layers during the dry season in Southern Africa, J. Geophys. Res., 108, 8496, doi:10.1029/2002JD002297.
-
McGill, M., et al. (2002), The Cloud Physics Lidar: Instrument Description and Initial Measurement Results, Appl. Opt., 41, 3725-3734.
Note: Only publications that have been uploaded to the ESD Publications database are listed here.