Light scattering by horizontally oriented platelike particles under normal incidence, such as ice plates or tree leaves under spaceborne lidar or radar waves, needs to be investigated for remote sensing of cirrus clouds or vegetation canopies. The solutions from the conventional geometrical ray tracing method for the scattering of electromagnetic waves by these particles are quite inaccurate because of the singularity problem that is inherent to this method. The scattering properties of large horizontally oriented platelike particles are usually approximated by using physical optics or electromagnetic wave theory while ignoring the side-face effect of the plates. In this paper, to examine the effect of side faces on light scattering by platelike particles, a 2-D finitedifference time-domain technique is applied to calculate light scattering by horizontally oriented ice and leaf strips under normal or quasi-normal incidence. It is found that for moderate-sized strips, the side faces of the particles scatter a significant amount of energy, resulting in strong maxima in the scattering phase function at certain scattering angles. By ignoring the effect of side faces, the scattering phase functions derived from electromagnetic wave theory have significant errors for small or moderate-sized strips. However, the ratio of the amount of energy scattered by the side faces to the total scattered energy decreases with the increase of strip width. When the size parameter of the strip is in the limit of geometric optics, the side-face effect is reduced to a negligible amount. However, even in this case, the polarization degrees from the approximation solutions of physical optics or electromagnetic wave theory ignoring the side-face effect still have large errors.