CLARREO shortwave observing system simulation experiments of the twenty‐first...

Feldman, D., C. A. Algieri, J. R. Ong, and W. D. Collins (2011), CLARREO shortwave observing system simulation experiments of the twenty‐first century: Simulator design and implementation, J. Geophys. Res., 116, D10107, doi:10.1029/2010JD015350.

Projected changes in the Earth system will likely be manifested in changes in reflected solar radiation. This paper introduces an operational Observational System Simulation Experiment (OSSE) to calculate the signals of future climate forcings and feedbacks in top‐of‐atmosphere reflectance spectra. The OSSE combines simulations from the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report for the NCAR Community Climate System Model (CCSM) with the MODTRAN radiative transfer code to calculate reflectance spectra for simulations of current and future climatic conditions over the 21st century. The OSSE produces narrowband reflectances and broadband fluxes, the latter of which have been extensively validated against archived CCSM results. The shortwave reflectance spectra contain atmospheric features including signals from water vapor, liquid and ice clouds, and aerosols. The spectra are also strongly influenced by the surface bidirectional reflectance properties of predicted snow and sea ice and the climatological seasonal cycles of vegetation. By comparing and contrasting simulated reflectance spectra based on emissions scenarios with increasing projected and fixed present‐day greenhouse gas and aerosol concentrations, we find that prescribed forcings from increases in anthropogenic sulfate and carbonaceous aerosols are detectable and are spatially confined to lower latitudes. Also, changes in the intertropical convergence zone and poleward shifts in the subsidence zones and the storm tracks are all detectable along with large changes in snow cover and sea ice fraction. These findings suggest that the proposed NASA Climate Absolute Radiance and Refractivity Observatory (CLARREO) mission to measure shortwave reflectance spectra may help elucidate climate forcings, responses, and feedbacks.

PDF of Publication: 
Download from publisher's website.