Organization
University of Wisconsin–Madison
Email
Business Phone
Work
(608) 263-4930
Business Address
Cooperative Institute for Meteorological Satellite Studies
Space Science and Engineering Center
Madison, WI
United States
First Author Publications
-
Menzel, P., et al. (2008), MODIS Global Cloud-Top Pressure and Amount Estimation: Algorithm Description and Results, J. Appl. Meteor. Climat., 47, 1175-1198, doi:10.1175/2007JAMC1705.1.
Note: Only publications that have been uploaded to the ESD Publications database are listed here.
Co-Authored Publications
-
Xue, Y., et al. (2022), Characteristics of Satellite Sampling Errors in Total Precipitable Water from SSMIS, HIRS, and COSMIC Observations, J. Geophys. Res..
-
Borbas, E.E., et al. (2021), Improvement in tropospheric moisture retrievals from VIIRS through the use of infrared absorption bands constructed from VIIRS and CrIS data fusion, Atmos. Meas. Tech., 14, 1191-1203, doi:10.5194/amt-14-1191-2021.
-
Foster, M.J., et al. (2020), State of the Climate in 2019: Cloudiness [in “State of the Climate in 2019”], Bull. Am. Meteor. Soc., 101, S51-S53, doi:10.1175/BAMS-D-20-0104.1.
-
Li, Y., et al. (2020), Improvement in cloud retrievals from VIIRS through the use of infrared absorption channels constructed from VIIRS+CrIS data fusion, Atmos. Meas. Tech., 13, 4035-4049, doi:10.5194/amt-13-4035-2020.
-
Frey, R.A., and P. Menzel (2019), Observed HIRS and MODIS High-Cloud Frequencies in the 2000s, J. Appl. Meteor. Climat., 58, 2469-2478, doi:10.1175/JAMC-D-19-0060.1.
-
Moeller, C.C., et al. (2014), Review of Terra MODIS thermal emissive band L1B radiometric performance, Proc. of SPIE, 9218, 92180T-1, doi:10.1117/12.2062138.
-
Murino, L., et al. (2014), Cloud Detection of MODIS Multispectral Images, J. Atmos. Oceanic Technol., 31, 347-365, doi:10.1175/JTECH-D-13-00088.1.
-
Gladkova, I., et al. (2013), Impact of the Aqua MODIS Band 6 Restoration on Cloud/Snow Discrimination, J. Atmos. Oceanic Technol., 30, 2712-2719, doi:10.1175/JTECH-D-13-00066.1.
-
Kabatas, B., et al. (2013), Comparing Ship-Track Droplet Sizes Inferred from Terra and Aqua MODIS Data, J. Appl. Meteor. Climat., 52, 230-241, doi:10.1175/JAMC-D-11-0232.1.
-
King, M.D., et al. (2013), Spatial and Temporal Distribution of Clouds Observed by MODIS Onboard the Terra and Aqua Satellites, IEEE Trans. Geosci. Remote Sens., 51, 3826-3852, doi:10.1109/TGRS.2012.2227333.
-
Kolat, U., et al. (2013), Very high cloud detection in more than two decades of HIRS data, J. Geophys. Res., 118, 3278-3284, doi:10.1029/2012JD018496.
-
Smith, N., et al. (2013), A Uniform Space–Time Gridding Algorithm for Comparison of Satellite Data Products: Characterization and Sensitivity Study, J. Appl. Meteor. Climat., 52, 255-268, doi:10.1175/JAMC-D-12-031.1.
-
Stubenrauch, C.J., et al. (2013), Assessment Of Global Cloud Datasets From Satellites: Project and Database Initiated by the GEWEX Radiation Panel, Bull. Am. Meteorol. Soc., 1031-1049, doi:10.1175/BAMS-D-12-00117.1.
-
Baum, B.A., et al. (2012), MODIS Cloud-Top Property Refinements for Collection 6, J. Appl. Meteor. Climat., 51, 1145-1163, doi:10.1175/JAMC-D-11-0203.1.
-
Weisz, E., et al. (2012), An Approach for Improving Cirrus Cloud-Top Pressure/Height Estimation by Merging High-Spatial-Resolution Infrared-Window Imager Data with High-Spectral-Resolution Sounder Data, J. Appl. Meteor. Climat., 51, 1477-1488, doi:10.1175/JAMC-D-11-0170.1.
-
Joiner, J., et al. (2010), Detection of multi-layer and vertically-extended clouds using A-train sensors, Atmos. Meas. Tech., 3, 233-247.
-
Gunshor, M.M., et al. (2009), Intercalibration of Broadband Geostationary Imagers Using AIRS, J. Atmos. Oceanic Technol., 26, 746-758, doi:10.1175/2008JTECHA1155.1.
-
Borbas, E.E., et al. (2008), Deriving Atmospheric Temperature of the Tropopause Region–Upper Troposphere by Combining Information from GPS Radio Occultation Refractivity and High-Spectral-Resolution Infrared Radiance Measurements, J. Appl. Meteor. Climat., 47, 2300-2310, doi:10.1175/2008JAMC1687.1.
-
Nazaryan, H., et al. (2008), Global characterization of cirrus clouds using CALIPSO data, J. Geophys. Res., 113, D16211, doi:10.1029/2007JD009481.
-
Plokhenko, Y., et al. (2008), Analysis of multispectral fields of satellite IR measurements: Using statistics of second spatial differential of spectral fields for measurement characterization, Aerosol Sci. Tech., 29, 2105-2125, doi:10.1080/01431160701268988.
-
Li, Z., et al. (2007), Comparison between current and future environmental satellite imagers on cloud classification using MODIS, Remote Sensing of Environment, 108, 311-326, doi:10.1016/j.rse.2006.11.023.
-
Rink, T., et al. (2007), Introducing HYDRA A Multispectral Data Analysis Toolkit, Bull. Am. Meteorol. Soc., 159-166, doi:10.1175/BAMS-88-2-159.
-
Weisz, E., et al. (2007), Comparison of AIRS, MODIS, CloudSat and CALIPSO cloud top height retrievals, Geophys. Res. Lett., 34, L17811, doi:10.1029/2007GL030676.
-
Li, J., et al. (2005), Optimal Cloud-Clearing for AIRS Radiances Using MODIS, IEEE Trans. Geosci. Remote Sens., 43, 1266-1278, doi:10.1109/TGRS.2005.847795.
-
Li, J., et al. (2005), Retrieval of Cloud Microphysical Properties from MODIS and AIRS, J. Appl. Meteor., 44, 1526-1543.
-
Wu, X., et al. (2005), Evaluation of AIRS cloud properties using MPACE data, Geophys. Res. Lett., 32, L24819, doi:10.1029/2005GL024400.
-
Li, J., et al. (2004), AIRS Subpixel Cloud Characterization Using MODIS Cloud Products, J. Appl. Meteor., 43, 1083-1094.
-
Liu, Y., et al. (2004), Nighttime polar cloud detection with MODIS, Remote Sensing of Environment, 92, 181-194, doi:10.1016/j.rse.2004.06.004.
-
Key, J.R., et al. (2003), Cloud-Drift and Water Vapor Winds in the Polar Regions From MODIS, IEEE Trans. Geosci. Remote Sens., 41, 482-492, doi:10.1109/TGRS.2002.808238.
-
King, M.D., et al. (2003), Cloud and aerosol properties, precipitable water, and profiles of temperature and water vapor from MODIS, IEEE Trans. Geosci. Remote Sens., 41, 442-458, doi:10.1109/TGRS.2002.808226.
-
Li, J., et al. (2003), High-Spatial-Resolution Surface and Cloud-Type Classification from MODIS Multispectral Band Measurements, J. Appl. Meteor., 42, 204-226.
-
Moeller, C.C., et al. (2003), Evaluation of MODIS thermal IR band L1B radiances during SAFARI 2000, J. Geophys. Res., 108, 8494, doi:10.1029/2002JD002323.
-
Platnick, S., et al. (2003), The MODIS cloud products: Algorithms and examples From Terra, IEEE Trans. Geosci. Remote Sens., 41, 459-473, doi:10.1109/TGRS.2002.808301.
-
Seemann, S.W., et al. (2003), Operational Retrieval of Atmospheric Temperature, Moisture, and Ozone from MODIS Infrared Radiances, J. Appl. Meteor., 42, 1072-1091.
-
Zhang, H., and P. Menzel (2002), Improvement in thin cirrus retrievals using an emissivity-adjusted CO2 slicing algorithm, J. Geophys. Res., 107, 4327, doi:10.1029/2001JD001037.
-
Chedzey, H., et al. (2001), remote sensing Technical Note Changes in HIRS Detection of Cloud over Australia from 1985 to 2001, Remote Sens., 2021, 917, doi:10.3390/rs13050917.
-
Baum, B.A., et al. (2000), Remote sensing of cloud properties using MODIS airborne simulator imagery during SUCCESS II. Cloud thermodynamic phase, J. Geophys. Res., 105, 11781-11792.
-
Borbas, E.E., et al. (2000), remote sensing Technical Note Observed HIRS and Aqua MODIS Thermal Infrared Moisture Determinations in the 2000s, Remote Sens., 2021, 502, doi:10.3390/rs13030502.
-
King, M.D., et al. (1996), Airborne Scanning Spectrometer for Remote Sensing of Cloud, Aerosol, Water Vapor, and Surface Properties, J. Atmos. Oceanic Technol., 13, 777-794, doi:10.1175/1520-0426(1996)013.
Note: Only publications that have been uploaded to the ESD Publications database are listed here.