The CPEX-CV website is undergoing a major upgrade that began Friday, October 11th at 5:00 PM PDT. The new upgraded site will be available no later than Monday, October 21st. Until that time, the current site will be visible but logins are disabled.
Joanna Joiner
Organization:
NASA Goddard Space Flight Center
Business Address:
Laboratory for Atmospheric Chemistry and Dynamics
Greenbelt, MD 20771
United StatesFirst Author Publications:
- Joiner, J., et al. (2018), Estimation of Terrestrial Global Gross Primary Production (GPP) with Satellite Data-Driven Models and Eddy Covariance Flux Data, doi:10.3390/rs10091346.
- Joiner, J., et al. (2018), Global relationships among traditional reflectance vegetation indices (NDVI T and NDII), evapotranspiration (ET), and soil moisture variability on weekly timescales, Remote Sensing of Environment, 219, 339-352, doi:10.1016/j.rse.2018.10.020.
- Joiner, J., et al. (2016), New methods for the retrieval of chlorophyll red fluorescence from hyperspectral satellite instruments: simulations and application to GOME-2 and SCIAMACHY, Atmos. Meas. Tech., 9, 3939-3967, doi:10.5194/amt-9-3939-2016.
- Joiner, J., et al. (2014), The seasonal cycle of satellite chlorophyll fluorescence observations and its relationship to vegetation phenology and ecosystem atmosphere carbon exchange, Remote Sensing of Environment, 152, 375-391, doi:10.1016/j.rse.2014.06.022.
- Joiner, J., et al. (2013), Global monitoring of terrestrial chlorophyll fluorescence from moderate-spectral-resolution near-infrared satellite measurements: methodology, simulations, and application to GOME-2, Atmos. Meas. Tech., 6, 2803-2823, doi:10.5194/amt-6-2803-2013.
- Joiner, J., et al. (2012), Filling-in of near-infrared solar lines by terrestrial fluorescence and other geophysical effects: simulations and space-based observations from SCIAMACHY and GOSAT, Atmos. Meas. Tech., 5, 809-829, doi:10.5194/amt-5-809-2012.
- Joiner, J., et al. (2012), Fast simulators for satellite cloud optical centroid pressure retrievals; evaluation of OMI cloud retrievals, Atmos. Meas. Tech., 5, 529-545, doi:10.5194/amt-5-529-2012.
- Joiner, J., et al. (2011), First observations of global and seasonal terrestrial chlorophyll fluorescence from space, Biogeosciences, 8, 637-651, doi:10.5194/bg-8-637-2011.
- Joiner, J., et al. (2010), Detection of multi-layer and vertically-extended clouds using A-train sensors, Atmos. Meas. Tech., 3, 233-247.
- Joiner, J., et al. (2009), Accurate satellite-derived estimates of the tropospheric ozone impact on the global radiation budget, Atmos. Chem. Phys., 9, 4447-4465, doi:10.5194/acp-9-4447-2009.
- Joiner, J., et al. (2007), Effects of data selection and error specification on the assimilation of AIRS data, Q. J. R. Meteorol. Soc., 133, 181-196, doi:10.1002/qj.8.
Co-Authored Publications:
- Fisher, B., et al. (2024), Revised estimates of NO2 reductions during the COVID-19 lockdowns using updated TROPOMI NO2 retrievals and model simulations, Atmos. Environ., 326, 120459, doi:10.1016/j.atmosenv.2024.120459.
- Fioletov, V. E., et al. (2023), Version 2 of the global catalogue of large anthropogenic and volcanic SO2 sources and emissions derived from satellite measurements, Earth Syst. Sci. Data, 15, 75-93, doi:10.5194/essd-15-75-2023.
- Fioletov, V. E., et al. (2023), Estimation of anthropogenic and volcanic SO2 emissions from satellite data in the presence of snow/ice on the ground, Atmos. Meas. Tech., 16, 5575-5592, doi:10.5194/amt-16-5575-2023.
- Li, C., et al. (2022), A new machine-learning-based analysis for improving satellite-retrieved atmospheric composition data: OMI SO2 as an example, Atmos. Meas. Tech., 15, 5497-5514, doi:10.5194/amt-15-5497-2022.
- Liu, J., et al. (2021), Carbon Monitoring System Flux Net Biosphere Exchange 2020 (CMS-Flux NBE 2020), Earth Syst. Sci. Data, 13, 299-330, doi:10.5194/essd-13-299-2021.
- Choi, S., et al. (2020), Assessment of NO2 observations during DISCOVER-AQ and KORUS-AQ field campaigns, Atmos. Meas. Tech., 13, 2523-2546, doi:10.5194/amt-13-2523-2020.
- Chong, H., et al. (2020), High-resolution mapping of SO2 using airborne observations from the T GeoTASO instrument during the KORUS-AQ field study: PCA-based vertical column retrievals ⁎, Remote Sensing of Environment, 241, 111725, doi:10.1016/j.rse.2020.111725.
- Liu, F., et al. (2020), The Authors, some Abrupt decline in tropospheric nitrogen dioxide over rights reserved; exclusive licensee China after the outbreak of COVID-19 American Association for the Advancement of Science. No claim to, Liu et al., Sci. Adv., 6, eabc2992.
- Shen, J., et al. (2020), Spatial pattern and seasonal dynamics of the photosynthesis activity across T Australian rainfed croplands ⁎, Ecological Indicators, 108, 105669, doi:10.1016/j.ecolind.2019.105669.
- Zhanga, Z., et al. (2020), Reduction of structural impacts and distinction of photosynthetic pathways T in a global estimation of GPP from space-borne solar-induced chlorophyll fluorescence, Remote Sensing of Environment, 240, 111722, doi:10.1016/j.rse.2020.111722.
- Bacour, C., et al. (2019), Differences Between OCO‐2 and GOME‐2 SIF Products From a Model‐Data Fusion Perspective, J. Geophys. Res., 124, 3143-3157, doi:10.1029/2018JG004938.
- He, L., et al. (2019), Diverse photosynthetic capacity of global ecosystems mapped by satellite T chlorophyll fluorescence measurements ⁎, Remote Sensing of Environment, 232, 111344, doi:10.1016/j.rse.2019.111344.
- Mohammeda, G. H., et al. (2019), Remote sensing of solar-induced chlorophyll fluorescence (SIF) in T vegetation: 50 years of progress, Remote Sensing of Environment, 231, 111177, doi:10.1016/j.rse.2019.04.030.
- Parazoo, N., et al. (2019), Towards a harmonized long‐term spaceborne record of far‐red solar‐induced fluorescence, J. Geophys. Res., 124, 2518-2539.
- Silvern, R. F., et al. (2019), Using satellite observations of tropospheric NO2 columns to infer long-term trends in US NOx emissions: the importance of accounting for the free tropospheric NO2 background, Atmos. Chem. Phys., 19, 8863-8878, doi:10.5194/acp-19-8863-2019.
- Yang, Y., et al. (2019), Cloud products from the Earth Polychromatic Imaging Camera (EPIC): algorithms and initial evaluation, Atmos. Meas. Tech., 12, 2019-2031, doi:10.5194/amt-12-2019-2019.
- Choi, S., et al. (2018), Link Between Arctic Tropospheric BrO Explosion Observed From Space and Sea-Salt Aerosols From Blowing Snow Investigated Using Ozone Monitoring Instrument, J. Geophys. Res., 123, 6954-6983, doi:10.1029/2017JD026889.
- Köehler, P., et al. (2018), Global retrievals of solar-induced chlorophyll fluorescence with TROPOMI: First results and intersensor comparison to OCO-2, Geophys. Res. Lett., 45, 10,456-10,463, doi:10.1029/2018GL079031.
- Liu, F., et al. (2018), A new global anthropogenic SO2 emission inventory for the last decade: a mosaic of satellite-derived and bottom-up emissions, Atmos. Chem. Phys., 18, 16571-16586, doi:10.5194/acp-18-16571-2018.
- Marais, E. A., et al. (2018), Nitrogen oxides in the global upper troposphere: interpreting cloud-sliced NO2 observations from the OMI satellite instrument, Atmos. Chem. Phys., 18, 17017-17027, doi:10.5194/acp-18-17017-2018.
- Sun, Y., et al. (2018), Overview of Solar-Induced chlorophyll Fluorescence (SIF) from the Orbiting T Carbon Observatory-2: Retrieval, cross-mission comparison, and global monitoring for GPP ⁎ ⁎⁎, Remote Sensing of Environment, 209, 808-823, doi:10.1016/j.rse.2018.02.016.
- Vasilkov, A. P., et al. (2018), A cloud algorithm based on the O2-O2 477 nm absorption band featuring an advanced spectral fitting method and the use of surface geometry-dependent Lambertian-equivalent reflectivity, Atmos. Meas. Tech., 11, 4093-4107, doi:10.5194/amt-11-4093-2018.
- Zhang, Y., et al. (2018), A global spatially contiguous solar-induced fluorescence (CSIF) dataset using neural networks, Biogeosciences, 15, 5779-5800, doi:10.5194/bg-15-5779-2018.
- Li, C., et al. (2017), India is overtaking China as the world’s largest emitter of anthropogenic sulfur dioxide, Scientific Reports, 7, 14304, doi:10.1038/s41598-017-14639-8.
- Li, C., et al. (2017), New-generation NASA Aura Ozone Monitoring Instrument (OMI) volcanic SO2 dataset: algorithm description, initial results, and continuation with the Suomi-NPP Ozone Mapping and Profiler Suite (OMPS), Atmos. Meas. Tech., 10, 445-458, doi:10.5194/amt-10-445-2017.
- Luus, K. A., et al. (2017), Tundra photosynthesis captured by satellite-observed solar-induced chlorophyll fluorescence, Geophys. Res. Lett., 44, 1564-1573, doi:10.1002/2016GL070842.
- Zhang, Y., et al. (2017), Continuation of long-term global SO2 pollution monitoring from OMI to OMPS, Atmos. Meas. Tech., 10, 1495-1509, doi:10.5194/amt-10-1495-2017.
- Zoogman, P., et al. (2017), Tropospheric emissions: Monitoring of pollution (TEMPO), J. Quant. Spectrosc. Radiat. Transfer, 186, 17-39, doi:10.1016/j.jqsrt.2016.05.008.
- Fioletov, V. E., et al. (2016), A global catalogue of large SO2 sources and emissions derived from the Ozone Monitoring Instrument, Atmos. Chem. Phys., 16, 11497-11519, doi:10.5194/acp-16-11497-2016.
- Krotkov, N., et al. (2016), Aura OMI observations of regional SO2 and NO2 pollution changes from 2005 to 2015, Atmos. Chem. Phys., 16, 4605-4629, doi:10.5194/acp-16-4605-2016.
- Li, C., et al. (2015), A new method for global retrievals of HCHO total columns from the Suomi National Polar-orbiting Partnership Ozone Mapping and Profiler Suite, Geophys. Res. Lett., 42, 2515-2522, doi:10.1002/2015GL063204.
- Choi, S., et al. (2014), First estimates of global free-tropospheric NO2 abundances derived using a cloud-slicing technique applied to satellite observations from the Aura Ozone Monitoring Instrument (OMI), Atmos. Chem. Phys., 14, 10565-10588, doi:10.5194/acp-14-10565-2014.
- Li, C., et al. (2013), A fast and sensitive new satellite SO2 retrieval algorithm based on principal component analysis: Application to the ozone monitoring instrument, Geophys. Res. Lett., 40, doi:10.1002/2013GL058134.
- Vasilkov, A. P., J. Joiner, and R. J. D. Spurr (2013), Note on rotational-Raman scattering in the O2 A- and B-bands, Atmos. Meas. Tech., 6, 981-990, doi:10.5194/amt-6-981-2013.
- Choi, S., et al. (2012), Analysis of satellite-derived Arctic tropospheric BrO columns in conjunction with aircraft measurements during ARCTAS and ARCPAC, Atmos. Chem. Phys., 12, 1255-1285, doi:10.5194/acp-12-1255-2012.
- Avery, M., et al. (2010), Convective distribution of tropospheric ozone and tracers in the Central American ITCZ region: Evidence from observations during TC4, J. Geophys. Res., 115, D00J21, doi:10.1029/2009JD013450.
- O’Byrne, G., et al. (2010), Surface reflectivity from the Ozone Monitoring Instrument using the Moderate Resolution Imaging Spectroradiometer to eliminate clouds: Effects of snow on ultraviolet and visible trace gas retrievals, J. Geophys. Res., 115, D17305, doi:10.1029/2009JD013079.
- Vasilkov, A. P., et al. (2010), What do satellite backscatter ultraviolet and visible spectrometers see over snow and ice? A study of clouds and ozone using the A-train, Atmos. Meas. Tech., 3, 619-629, doi:10.5194/amt-3-619-2010.
- Yoshida, Y., et al. (2010), The impact of the 2005 Gulf hurricanes on pollution emissions as inferred from Ozone Monitoring Instrument (OMI) nitrogen dioxide, Atmos. Environ., 44, 1443-1448, doi:10.1016/j.atmosenv.2010.01.037.
- Vasilkov, A. P., et al. (2009), Impact of tropospheric nitrogen dioxide on the regional radiation budget, Atmos. Chem. Phys., 9, 6389-6400, doi:10.5194/acp-9-6389-2009.
- Ziemke, J. R., et al. (2009), Ozone mixing ratios inside tropical deep convective clouds from OMI satellite measurements, Atmos. Chem. Phys., 9, 573-583, doi:10.5194/acp-9-573-2009.
- Sneep, M., et al. (2008), Three-way comparison between OMI and PARASOL cloud pressure products, J. Geophys. Res., 113, D15S23, doi:10.1029/2007JD008694.
- Vasilkov, A. P., et al. (2008), Evaluation of the OMI cloud pressures derived from rotational Raman scattering by comparisons with other satellite data and radiative transfer simulations, J. Geophys. Res., 113, D15S19, doi:10.1029/2007JD008689.
Note: Only publications that have been uploaded to the
ESD Publications database are listed here.