Organization:
NASA Ames Research Center
Business Address:
NASA Ames Research Center
Mail Stop 245-5
Bldg. 245, Rm. 22
Moffett Field, CA 94035-0001
United StatesFirst Author Publications:
- Podolske, J., and M. Loewenstein (1993), Airborne tunable diode laser spectrometer for trace-gas measurement in the lower stratosphere, Appl. Opt., 32, 5324-5333.
- Podolske, J., et al. (1993), Northern Hemisphere Nitrous Oxide Morphology During the 1989 AASE and the 1991-1992 AASE II Campaigns, Geophys. Res. Lett., 20, 2535-2538.
- Podolske, J., et al. (1989), Stratospheric Nitrous Oxide Distribution in the Southern Hemisphere, J. Geophys. Res., 94, 16,767-16.
- Podolske, J. (1989), A Chemical Definition of the Boundary of the Antarctic Ozone Hole, J. Geophys. Res., 94, 11,347-11.
Co-Authored Publications:
- Pan, L. L., et al. (2024), East Asian summer monsoon delivers large abundances of very-short-lived organic chlorine substances to the lower stratosphere, Proc. Natl. Acad. Sci., doi:10.1073/pnas.2318716121.
- Parker, H. A., et al. (2023), Inferring the vertical distribution of CO and CO2 from TCCON total column values using the TARDISS algorithm, Atmos. Meas. Tech., 16, 2601-2625, doi:10.5194/amt-16-2601-2023.
- Wolfe, G. M., et al. (2022), Photochemical evolution of the 2013 California Rim Fire: synergistic impacts of reactive hydrocarbons and enhanced oxidants, Atmos. Chem. Phys., doi:10.5194/acp-22-4253-2022.
- Doherty, S., et al. (2021), Modeled and observed properties related to the direct aerosol radiative effect of biomass burning aerosol over the Southeast Atlantic, Atmos. Chem. Phys., doi:10.5194/acp-2021-333.
- Doherty, S., et al. (2021), Modeled and observed properties related to the direct aerosol radiative effect of biomass burning aerosol over the Southeast Atlantic, Atmos. Chem. Phys., doi:10.5194/acp-2021-333 (submitted).
- Gupta, S., et al. (2021), Impact of the Variability in Vertical Separation between BiomassBurning Aerosols and Marine Stratocumulus on Cloud Microphysical Properties over the Southeast Atlantic, Atmos. Chem. Phys., doi:10.5194/acp-2020-1039.
- Hedelius, J. K., et al. (2021), Regional and Urban Column CO Trends and Anomalies as Observed by MOPITT Over 16 Years, J. Geophys. Res., 126, e2020JD033967, doi:10.1029/2020JD033967.
- Pistone, K., et al. (2021), Exploring the elevated water vapor signal associated with the free-tropospheric biomass burning plume over the southeast Atlantic Ocean, Atmos. Chem. Phys., doi:10.5194/acp-2020-1322 (submitted).
- Pistone, K., et al. (2021), Exploring the elevated water vapor signal associated with the free tropospheric biomass burning plume over the southeast Atlantic Ocean, Atmos. Chem. Phys., 21, 9643-9668, doi:10.5194/acp-21-9643-2021.
- Redemann, J., et al. (2021), An overview of the ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS) project: aerosol–cloud–radiation interactions in the southeast Atlantic basin, Atmos. Chem. Phys., 21, 1507-1563, doi:10.5194/acp-21-1507-2021.
- Gupta, S., et al. (2020), Impact of the Variability in Vertical Separation between Biomass-Burning Aerosols and Marine Stratocumulus on Cloud Microphysical Properties over the Southeast Atlantic, Atmos. Chem. Phys. Discuss., in review, doi:10.5194/acp-2020-1039.
- LeBlanc, S., et al. (2020), Above-cloud aerosol optical depth from airborne observations in the southeast Atlantic, Atmos. Chem. Phys., 20, 1565-1590, doi:10.5194/acp-20-1565-2020.
- Redemann, J., et al. (2020), An overview of the ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS) project: aerosol-cloud-radiation interactions in the Southeast Atlantic basin, Atmos. Chem. Phys. Discuss., doi:10.5194/acp-2020-449.
- Shinozuka, Y., et al. (2020), Modeling the smoky troposphere of the southeast Atlantic: a comparison to ORACLES airborne observations from September of 2016, Atmos. Chem. Phys., 20, 11491-11526, doi:10.5194/acp-20-11491-2020.
- shinozuka, et al. (2019), Modeling the smoky troposphere of the southeast Atlantic: a comparison to ORACLES airborne observations from September of 2016, Atmos. Chem. Phys. Discuss., doi: https://doi.org/10.5194/acp-2019-678 (submitted).
- Diamond, M., et al. (2018), Time-dependent entrainment of smoke presents an observational challenge for assessing aerosol–cloud interactions over the southeast Atlantic Ocean, Atmos. Chem. Phys., 18, 14623-14636, doi:10.5194/acp-18-14623-2018.
- Hedelius, J. K., et al. (2018), Southern California megacity CO2, CH4, and CO flux estimates using ground- and space-based remote sensing and a Lagrangian model, Atmos. Chem. Phys., 18, 16271-16291, doi:10.5194/acp-18-16271-2018.
- Hedelius, J. K., et al. (2018), Southern California megacity CO2, CH4, and CO flux estimates using ground- and space-based remote sensing and a Lagrangian model, Ca, doi:https://doi.org/10.5194/acp-18-16271-2018.
- Hedelius, J. K., et al. (2018), Southern California megacity CO2, CH4, and CO flux estimates using ground- and space-based remote sensing and a Lagrangian model, Atmos. Chem. Phys., 18, 16271-16291, doi:10.5194/acp-18-16271-2018.
- Nault, B., et al. (2017), Lightning NOx Emissions: Reconciling Measured and Modeled Estimates With Updated NOx Chemistry, Geophys. Res. Lett., 44, 9479-9488, doi:10.1002/2017GL074436.
- Wunch, D., et al. (2017), Comparisons of the Orbiting Carbon Observatory-2 (OCO-2) XCO2 measurements with TCCON, Atmos. Meas. Tech., 10, 2209-2238, doi:10.5194/amt-10-2209-2017.
- Dupuy, E., et al. (2016), Comparison of XH2O Retrieved from GOSAT Short-Wavelength Infrared Spectra with Observations from the TCCON Network, Remote Sens., 8, 414, doi:10.3390/rs8050414.
- Kawakami, S., et al. (2015), A Compact Automated FTS at the Desert Playa for Satellite Validation of the Total Column CO2 and CH4, OSA Fourier Transform Spectroscopy 2015 Proceedings, doi:10.1364/FTS.2015.FW3A.2.
- Rollins, A., et al. (2014), Evaluation of UT/LS hygrometer accuracy by intercomparison during the NASA MACPEX mission, J. Geophys. Res., 119, doi:10.1002/2013JD020817.
- Klonecki, A., et al. (2012), Assimilation of IASI satellite CO fields into a global chemistry transport model for validation against aircraft measurements, Atmos. Chem. Phys., 12, 4493-4512, doi:10.5194/acp-12-4493-2012.
- McHaughton, C. S., et al. (2011), Absorbing aerosols in the troposphere of the Western Arctic during the 2008 ACTAS/ARCPAC airborne field campaigns, Atmos. Chem. Phys., 11, 7561-7582, doi:10.5194/acp-11-7515-2011.
- McNaughton, C. S., et al. (2011), Absorbing aerosol in the troposphere of the Western Arctic during the 2008 ARCTAS/ARCPAC airborne field campaigns, Atmos. Chem. Phys., 11, 7561-7582, doi:10.5194/acp-11-7561-2011.
- Pfister, G., et al. (2011), CO source contribution analysis for California during ARCTAS-CARB., Atmos. Chem. Phys., 11, 7515-7532, doi:10.5194/acp-11-7515-2011.
- Pommier, M. K., et al. (2010), IASI carbon monoxide validation over Arctic during POLARCAT spring and summer campaigns, Atmos. Chem. Phys. Discuss., 10, 14445-14494.
- Tilmes, S., et al. (2010), An aircraft-based upper troposphere lower stratosphere O3, CO and H2O climatology for the Northern Hemisphere, J. Geophys. Res. (submitted).
- Fried, A., et al. (2008), Role of convection in redistributing formaldehyde to the upper troposphere over North America and the North Atlantic during the summer 2004 INTEX campaign, J. Geophys. Res., 113, D17306, doi:10.1029/2007JD009760.
- Livingston, J. M., et al. (2008), Comparison of Water Vapor Measurements by Airborne Sun Photometer and Diode Laser Hygrometer on the NASA DC-8, J. Atmos. Oceanic Technol., 25, 1733-1743, doi:10.1175/2008JTECHA1047.1.
- Gamblin, B., et al. (2006), Nitric acid condensation on ice: 1. Non-HNO3 constituent of NOY condensing cirrus particles on upper tropospheric, J. Geophys. Res., 111, D21203, doi:10.1029/2005JD006048.
- Eisele, F., et al. (2003), Summary of measurement intercomparisons during TRACE-P, J. Geophys. Res., 108, 8791, doi:10.1029/2002JD003167.
- Pfister, L., et al. (2003), Processes controlling water vapor in the winter Arctic tropopause region, J. Geophys. Res., 108, 8314, doi:10.1029/2001JD001067.
- Greenblatt, J. B., et al. (2002), Defining the polar vortex edge from an N2O potential temperature correlation, J. Geophys. Res., 107, 8268, doi:10.1029/2001JD000575.
- Greenblatt, J. B., et al. (2002), Tracer-based determination of vortex descent in the 1999-2000 Arctic winter, J. Geophys. Res., 107, 8279, doi:10.1029/2001JD000937.
- Hurst, D., et al. (2002), The construction of a unified, high-resolution nitrous oxide data set for ER-2 flights during SOLVE, J. Geophys. Res., 107, 8271, doi:10.1029/2001JD000417.
- Jost, H., et al. (2002), Mixing events revealed by anomalous tracer relationships in the Arctic vortex during winter 1999/2000, J. Geophys, Res., 107, 4795, doi:10.1029/2002JD002380.
- Andrews, A. E., et al. (2001), Mean ages of stratospheric air derived from in situ observations of CO2, CH4, and N2O, J. Geophys. Res., 106, 32.
- Andrews, A. E., et al. (2001), Empirical age spectra for the midlatitude lower stratosphere from in situ observations of CO2: quantitative evidence for a subtropical "barrier" to horizontal transport, J. Geophys. Res., 106, 10257-10274.
- Ferrare, R., et al. (2001), LASE measurements of water vapor, aerosols, and clouds during SOLVE, Trends Opt. Photonics, 52, 23-25.
- Newman, P., et al. (2001), Chance encounter with a stratospheric kerosene rocket plume from Russia over California, Geophys. Res. Lett., 28, 959-962.
- Weinstock, E., et al. (2001), Constraints on the seasonal cycle of stratospheric water vapor using in situ measurements from the ER-2 and a CO photochemical clock, J. Geophys. Res., 106, 22707-22734, doi:2000JD000047.
- Hurst, D., et al. (2000), Comparison of in situ N2O and CH4 measurements in the upper troposphere and lower stratosphere during STRAT and POLARIS, J. Geophys. Res., 105, 19811-19822.
- Vay, S. A., et al. (2000), Tropospheric water vapor measurements over the North Atlantic during the Subsonic Assessment Ozone and Nitrogen Oxide Experiment (SONEX), J. Geophys. Res., 105, 3745-3755.
- Strahan, S., M. Loewenstein, and J. Podolske (1999), Climatologyand small-scalestructureof lower stratosphericNzO based on in situ observations, J. Geophys. Res., 104, 2195-2208.
- Fairlie, T. D., et al. (1997), Lagrangian forecasting during ASHOE/MAESA: Analysis of predictive skill for analyzed and reverse-domain-filled potential vorticity, J. Geophys. Res., 102, 13169-13182.
- Blake, T. A., C. Chackerian, and J. Podolske (1996), Prognosis for a mid-infrared magnetic rotation spectrometer for the in situ detection of atmospheric free-radicals, Appl. Opt., 35, 973-985.
- Boering, K. A., et al. (1996), Stratospheric mean ages and transport rates from observations of carbon-dioxide and nitrous-oxide, Science, 274, 1340-1343.
- Chang, A. Y., et al. (1996), A comparison of measurements from ATMOS and instruments aboard the ER-2 aircraft: Halogenated gases, Geophys. Res. Lett., 23, 2393-2396.
- Chang, A. Y., et al. (1996), A comparison of measurements from ATMOS and instruments aboard the ER-2 aircraft: Tracers of atmospheric transport, Geophys. Res. Lett., 23, 2389-2392.
- Dye, J. E., et al. (1996), In-situ observations of an Antarctic polar stratospheric cloud: Similarities with Arctic observations, Geophys. Res. Lett., 23, 1913-1916.
- Keim, E. R., et al. (1996), Observations of large reductions in the NO/NOy ratio near the mid-latitude tropopause and the role of heterogeneous chemistry, Geophys. Res. Lett., 23, 3223-3226.
- Minschwaner, K., et al. (1996), Bulk properties of isentropic mixing into the tropics in the lower stratosphere, J. Geophys. Res., 101, 9433-9439.
- Newchurch, M., et al. (1996), Stratospheric NO and NO2 abundances from atmos solar-occultation measurements, Geophys. Res. Lett., 23, 2373-2376.
- Newman, P., et al. (1996), Measurements of polar vortex air in the midlatitudes, J. Geophys. Res., 101, 12,879-12.
- Volk, C. M., et al. (1996), Quantifying transport between the tropical and mid-latitude lower stratosphere, Science, 272, 1763-1768.
- Woodbridge, E. L., et al. (1995), Estimates of total organic and inorganic chlorine in the lower stratosphere from in situ and flask measurements during AASE II, J. Geophys. Res., 100.D2, 3057-3064.
- Boering, K. A., et al. (1994), Tracer-tracer Relationships and Lower Stratosphere Dynamics: CO2 and N2O Correlations During SPADE, Geophys. Res. Lett., 21, 2567-2570.
- Hintsa, E., et al. (1994), SPADE H2O Measurements and the Seasonal Cycle of Stratospheric Water Vapor, Geophys. Res. Lett., 21, 2559-2562.
- Salawitch, R., et al. (1994), The Distribution of Hydrogen, Nitrogen, and Chlorine Radicals in the Lower Stratosphere: Implications for Changes in O3 Due to Emission of NOy from Supersonic Aircraft, Geophys. Res. Lett., 21, 2547-2550.
- Salawitch, R., et al. (1994), The Diurnal Variation of Hydrogen, Nitrogen, and Chlorine Radicals: Implications for the Heterogeneous Production of HNO2, Geophys. Res. Lett., 21, 2551-2554.
- Stimpfle, R., et al. (1994), The Response of ClO Radical Concentrations to Variations in NO2 Radical Concentrations in the Lower Stratosphere, Geophys. Res. Lett., 21, 2543-2546.
- Strahan, S., et al. (1994), Evolution of the 1991-1992 Arctic Vortex and Comparison with the Geophysical Fluid-Dynamics Laboratory Skyhi General-Circulation Model, J. Geophys. Res., 99, 20,713-20.
- Tuck, A. F., et al. (1994), Spread of Denitrification From 1987 Antarctic and 1988-1989 Arctic Stratospheric Vortices, J. Geophys. Res., 99, 20,573-20.
- Waugh, D., et al. (1994), Fine-Scale Poleward Transport of Tropical Air During AASE 2, Geophys. Res. Lett., 21, 2603-2606.
- Wennberg, P., et al. (1994), Removal of Stratospheric O3 by Radicals: In Situ Measurements of OH, HO2, NO, NO2, ClO, and BrO, Science, 266, 398-404.
- Wofsy, S. C., et al. (1994), Vertical Transport Rates in 1993 From Observations of CO2, N2O and Ch4, Geophys. Res. Lett., 21, 2571-2574.
- Browell, E., et al. (1993), Ozone and aerosol changes observed during the 1991-92 Airborne Arctic Stratospheric Expedition, Science, 261, 1155-1158.
- Fahey, D., et al. (1993), In Situ Measurements Constraining the Role of Sulphate Aerosols in Mid-Latitude Ozone Depletion, Nature, 363, 509-514.
- Loewenstein, M., et al. (1993), New Observations of the NOy/N2O Correlation in the Lower Stratosphere, Geophys. Res. Lett., 20, 2531-2534, doi:10.1029/93GL03004.
- Proffitt, M., et al. (1993), Ozone Loss Inside the Northern Polar Vortex During the 1991-1992 Winter, Science, 261, 1150-1154.
- Salawitch, R., et al. (1993), Chemical Loss of Ozone in the Arctic Polar Vortex in the Winter of 1991-1992, Science, 261, 1146-1149.
- Weaver, A., et al. (1993), Effects of Pinatubo Aerosol on Stratospheric Ozone at Mid-Latitudes, Geophys. Res. Lett., 20, 2515-2518.
- Wilson, J., et al. (1993), In Situ Observations of Aerosol and Chlorine Monoxide After the 1991 Eruption of Mount Pinatubo: Effect of Reactions on Sulfate Aerosol, Science, 261, 1140-1143.
- Bacmeister, J., et al. (1992), An Estimate of the Relative Magnitude of Small-Scale Tracer Fluxes, Geophys. Res. Lett., 19, 1101-1104.
- Tuck, A. F., et al. (1992), Polar Stratospheric Cloud Processed Air and Potential Vorticity in the Northern Hemisphere Lower Stratosphere at Mid-Latitudes During Winter, J. Geophys. Res., 97, 7883-7904.
- Douglass, A., et al. (1990), Global Three-Dimensional Constituent Fields Derived From Profile Data, Geophys. Res. Lett., 17, 525-528.
- Fahey, D., et al. (1990), A Diagnostic for Denitrification in the Winter Polar Stratosphere, Nature, 345, 698-702.
- Kelley, K. K., et al. (1990), A Comparison of ER-2 Measurements of Stratospheric Water Vapor Between the 1987 Antarctic and 1989 Arctic Airborne Missions, Geophys. Res. Lett., 17, 465-468.
- Lait, L. R., et al. (1990), Reconstruction of O3 and N2O fields from ER-2, DC-8, and Balloon Observations, Geophys. Res. Lett., 17, 521-524.
- Loewenstein, M., et al. (1990), N2O as a Dynamical Tracer in the Arctic Vortex, Geophys. Res. Lett., 17, 477-480.
- Loewenstein, M., J. Podolske, and S. Strahan (1990), ATLAS Instrument Characterization: Accuracy of the AASE and AAOE Nitrous Oxide Data Sets, Geophys. Res. Lett., 17, 481-484.
- Proffitt, M., et al. (1990), Ozone Loss in the Arctic Polar Vortex Inferred from High-Altitude Aircraft Measurements, Nature, 347, 31-36.
- Salawitch, R., et al. (1990), Loss of Ozone in the Polar Vortex for the Winter of 1989, Geophys. Res. Lett., 17, 561-164.
- Schoeberl, M. R., et al. (1990), Stratospheric Constituent Trends from ER-2 Profile Data, Geophys. Res. Lett., 17, 469-472.
- Hartmann, et al. (1989), Potential Vorticity Estimates in the South Polar Vortex from ER-2 Data, J. Geophys. Res., 94, 11,625-11.
- Hartmann, D. L., et al. (1989), Transport into the South Polar Vortex in Early Spring, J. Geophys. Res., 94, 16,779-16.
- Loewenstein, M., et al. (1989), Nitrous Oxide as a Dynamical Tracer in the 1987 Airborne Antarctic Ozone Experiment, J. Geophys. Res., 94, 11,589-11.
- Loewenstein, M., et al. (1989), Evidence for Diabatic Cooling and Poleward Transport Within and Around the 1987 Antarctic Ozone Hole, J. Geophys. Res., 94, 16,797-16.
- Murphy, D. M., et al. (1989), Indicators of Transport and Vertical Motion from Corrections between In Situ Measurements of the Airborne Antarctic Ozone Experiment, J. Geophys. Res., 94, 11,669-11.
- Strahan, S., et al. (1989), Correlation of N2O and Ozone in the Southern Polar Vortex During the Airborne Antarctic Ozone Experiment, J. Geophys. Res., 94, 16,749-16.
Note: Only publications that have been uploaded to the
ESD Publications database are listed here.