Warning message

Member access has been temporarily disabled. Please try again later.
The CPEX-CV website is undergoing a major upgrade that began Friday, October 11th at 5:00 PM PDT. The new upgraded site will be available no later than Monday, October 21st. Until that time, the current site will be visible but logins are disabled.

Precision requirements for space-based XCO2 data

Miller, C. E., D. Crisp, P. DeCola, S. C. Olsen, J. T. Randerson, A. M. Michalak, A. Alkhaled, P. Rayner, D. J. Jacob, P. Suntharalingam, D. B. Jones, S. Denning, M. E. Nicholls, S. C. Doney, S. Pawson, H. Boesch, B. J. Connor, I. Fung, D. O’Brien, R. Salawitch, S. P. Sander, B. Sen, P. Tans, G. Toon, P. Wennberg, S. C. Wofsy, Y. L. Yung, and R. M. Law (2007), Precision requirements for space-based XCO2 data, J. Geophys. Res., 112, D10314, doi:10.1029/2006JD007659.
Abstract: 

Precision requirements are determined for space-based column-averaged CO2 dry air mole fraction (XCO2) data. These requirements result from an assessment of spatial and temporal gradients in XCO2, the relationship between XCO2 precision and surface CO2 flux uncertainties inferred from inversions of the XCO2 data, and the effects of XCO2 biases on the fidelity of CO2 flux inversions. Observational system simulation experiments and synthesis inversion modeling demonstrate that the Orbiting Carbon Observatory mission design and sampling strategy provide the means to achieve these XCO2 data precision requirements.

PDF of Publication: 
Download from publisher's website.
Research Program: 
Carbon Cycle & Ecosystems Program (CCEP)