Disclaimer: This material is being kept online for historical purposes. Though accurate at the time of publication, it is no longer being updated. The page may contain broken links or outdated information, and parts may not function in current web browsers. Visit https://espo.nasa.gov for information about our current projects.

 

Synonyms: 
WB-57
WB57
Associated content: 

Fast Cloud Droplet Probe

SPEC has developed a Fast Cloud Droplet Probe (FCDP) with state-of-the-art electro-optics and electronics that utilizes forward scattering to determine cloud droplet distributions and concentrations in the range of 1.5 to 50 microns.  Though designed for cloud droplet measurements, the probe has also shown reliable measurements in ice clouds.  The new electronics include a temperature controlled fiber-coupled laser, FSSP-300 optics with pinhole limiting depth of field (Lance et al. 2010), a field programmable gate array (FPGA), 40 MHz analog-to-digital-converter (ADC) sampling, custom amplifiers, a very small and low power Linux based 400 MHz processor and a 16-Gigabyte flash drive that stores data at the probe.

Instrument Type: 
Aircraft: 
WB-57 - JSC, NASA P-3 Orion - WFF, Global Hawk - AFRC, Learjet SPEC, NASA DC-8 -AFRC, ER-2 - AFRC
Point(s) of Contact: 

Upper Troposphere/Lower Stratosphere Aerosol Microphysics Package

The UTLS Aerosol Measurement Package comprises three individual instruments for the measurement of aerosol number size distribution in the upper troposphere and lower stratosphere: a Nucleation Mode Aerosol Size Spectrometer (NMASS), an Ultra-High Sensitivity Aerosol Spectrometer (UHSAS), and a Portable Optical Particle Spectrometer (POPS). These instruments, along with a Passive, Near-Isokinetic Inlet for sampling atmospheric particles from a fast-moving aircraft, provide a measurement of the UT/LS particle size distribution from 4 to 3000 nm diameter. Aerosol microphysical measurements in the UT/LS are integral to understanding the chemical and radiative processes that control the Earth’s climate, and UTLS-AMP provides data for investigation of topics ranging from new particle formation to long range transport of dust and fine volcanic ash.

Instrument Type: 
Aircraft: 
Point(s) of Contact: 

Aerosol and Cloud Lidar

Roscoe is a new, more compact version of the NASA GSFC Cloud Physics Lidar that has flown on multiple NASA high altitude aircraft over the past two decades. While utilizing the same proven measurement technique of coupling a high repetition rate laser with photon-counting detection, Roscoe differs from CPL in two significant ways.  First, it is designed to simultaneously observe both upwards and downwards from the aircraft, to enable studies of stratospheric aerosols above flight altitude as well as below.  It is, essentially, two small CPL instruments in one package, one pointing nadir and one pointing zenith.  Second, it operates at only 1064 and 355 nm (not 532 nm) to satisfy eye-safety considerations for airborne operation.  Roscoe measures depolarization at both wavelengths to characterize the phase of the cloud and aerosol particles detected.

Instrument Type: 
Aircraft: 
Point(s) of Contact: 

Laser Induced Fluorescence – Nitrogen Oxide

The LIF-NO instrument uses single-photon laser induced fluorescence to achieve fast, precise and accurate measurements of nitric oxide down to sub-pptv mixing ratios. The instrument is designed as a two-channel instrument and the second channel can be used to detect other species that can be converted into NO, such as NO2 or NOy. Measurements of reactive nitrogen species provide important constraints on radical oxidation chemistry, ozone destroying chemistry, and are useful tracers of pollution.

Instrument Type: 
Measurements: 
Aircraft: 
Point(s) of Contact: 

Laser Induced Fluorescence – Sulfur Dioxide

The LIF-SO2 instrument detects sulfur dioxide at the single-part per trillion (ppt) level using red-shifted laser-induced fluorescence. It has operated on the WB-57 and Global Hawk aircraft in the UT/LS, as well as on the DC-8. Sulfur Dioxide is an important precursor for aerosols including nucleation of new particles globally and can be greatly enhanced in the stratosphere following explosive volcanic eruptions. An important implication of the Asian Monsoon is transport of aerosol precursors including SO2 into the lower stratosphere.

Instrument Type: 
Measurements: 
Point(s) of Contact: 

Chicago Water Isotope Spectrometer

Chi-WIS is a mid-infrared tunable diode laser off-axis integrated cavity output absorption spectrometer (ICOS) instrument for measurement of H2O and HDO in the upper troposphere and lower stratosphere. The high precision of the measurement allows detection of small changes in the HDO/H2O ratio that can be used to study water transport pathways and characterize the extent to which convection-driven water vapor perturbations propagate through the UT/LS to contribute to the overall stratospheric water budget. Chi-WIS participated in the 2017 StratoClim campaign onboard the M-55 Geophysica high altitude research aircraft measuring the isotopic composition of water vapor between 12 and 20 kilometers inside the Asian Summer Monsoon anticyclone.

Instrument Type: 
Measurements: 
Aircraft: 
Point(s) of Contact: 

Carbon Oxide Laser Detector 2

COLD2 is an automated, portable, mid-infrared quantum cascade laser spectrometer for in situ carbon monoxide mixing ratio measurements in the upper troposphere and lower stratosphere. The instrument was designed to be versatile, suitable for easy installation on different platforms and capable of operating completely unattended, without the presence of an operator. The spectrometer features a small size (80 × 25 × 41 cm 3 ), light weight (23 kg) and low power consumption (85 W typical), without being pressurized. COLD2 recently flew aboard the research aircraft M55 Geophysica during a measurement campaign (StratoClim) carried out in Nepal in summer 2017. The instrument worked extremely well, without external maintenance during all flights, yielding an in-flight sensitivity of 1–2 ppbV with a time resolution of 1 s.

Instrument Type: 
Measurements: 
Aircraft: 
Point(s) of Contact: 

Carbon Monoxide Measurement & Analysis

Instrument Type: 
Measurements: 
Point(s) of Contact: 

Pages

Subscribe to RSS - WB-57 - JSC