Atmospheric aerosol particles act as cloud condensation nuclei, affording them the ability to influence cloud microphysics, planetary albedo, and precipitation. Models of varying complexity and satellite observations from NASA’s A-Train constellation of satellites are used to determine what controls the precipitation susceptibility of warm clouds to aerosol perturbations. Three susceptibility regimes are identified: (i) clouds with low liquid water path (LWP) generate very little rain and are least susceptible to aerosol; (ii) clouds with intermediate LWP where aerosol most effectively suppress precipitation; and (iii) clouds with high LWP, where the susceptibility begins to decrease because the precipitation process is efficient owing to abundant liquid water. Remarkable qualitative agreement between remote sensing observations and model predictions provides the first suggestions that certain regions of the Earth might be more vulnerable to pollution aerosol. Targeted pollution control strategies in such regions would most benefit water availability via precipitation.
On the precipitation susceptibility of clouds to aerosol perturbations
Sorooshian, A., G. Feingold, M.D. Lebsock, H. Jiang, and G.L. Stephens (2009), On the precipitation susceptibility of clouds to aerosol perturbations, Geophys. Res. Lett., 36, L13803, doi:10.1029/2009GL038993.
Abstract
PDF of Publication
Download from publisher's website
Mission
CloudSat
Disclaimer: This material is being kept online for historical purposes. Though accurate at the time of publication, it is no longer being updated. The page may contain broken links or outdated information, and parts may not function in current web browsers. Visit https://espo.nasa.gov for information about our current projects.