Disclaimer: This material is being kept online for historical purposes. Though accurate at the time of publication, it is no longer being updated. The page may contain broken links or outdated information, and parts may not function in current web browsers. Visit https://espo.nasa.gov for information about our current projects.
Three-dimensional (3-D) cloud radiative effects on clear-sky reflectances and associated aerosol optical depth retrievals are quantified for a cumulus cloud field in a biomass burning region in Brazil through a Monte Carlo simulation. In this study the 1-km Moderate Resolution Imaging Spectroradiometer cloud optical depth and surface reflectance datasets are used to compute the 3-D radiation fields with ambient aerosol optical thickness of 0.1 at a wavelength of 0.66 m. The 3-D radiative effects range from 0.015 to 0.018 with an average of 0.004 and standard deviation of 0.006. The 3-D effects are most pronounced and variable for cloud neighboring pixels, where both large negative effects over shadows and positive effects near sunlit cloud edges are found. The clear next-to-cloud pixels, that contain
83% of the clear pixel population, are affected in the most complex way and not reliable for aerosol retrieval. In the area 2 km away from clouds, the 3-D effects enhance the reflectance in clear patches. The average and variability of enhancements gradually decrease as a function of the cloud-free distance, resulting in a systematically higher aerosol optical depth estimates for pixels closer to clouds in one-dimensional (1-D) retrieval. At a distance of 3 km away from clouds, the 3-D effect is still appreciable with the average enhancement slightly less than 0.004. This enhancement will lead to an over estimate of aerosol optical thickness of 0.04 in 1-D retrieval, which is significant for an ambient atmosphere with aerosol optical thickness of 0.1.