Warning message

Member access has been temporarily disabled. Please try again later.
The ARISE website is undergoing a major upgrade that began Friday, October 11th at 5:00 PM PDT. The new upgraded site will be available no later than Monday, October 21st. Until that time, the current site will be visible but logins are disabled.

 

Disclaimer: This material is being kept online for historical purposes. Though accurate at the time of publication, it is no longer being updated. The page may contain broken links or outdated information, and parts may not function in current web browsers. Visit https://espo.nasa.gov for information about our current projects.

 

How are mixed-phase clouds mixed?

Korolev, A., and J. Milbrandt (2022), How are mixed-phase clouds mixed?, Geophys. Res. Lett., 49, org/10.1029/2022GL099578.
Abstract: 

Mixed-phase clouds are recognized as significant contributors to the modulation of precipitation and radiation transfer on both regional and global scales. This study is focused on the analysis of spatial inhomogeneity of mixed-phase clouds based on an extended data set obtained from airborne in situ observations. The lengths of continuous segments of ice, liquid, and mixed-phase clouds present a cascade of scales varying from 10 2 km down to a minimum scale of 100 m determined by the spatial resolution of measurements. It was found that the phase composition of mixed-phase clouds is highly intermittent, and the frequency of occurrence of ice, liquid, and mixed-phase regions increases with the decrease of their spatial scales. The distributions of spatial scales have well-distinguished power-law dependencies. The results obtained yield insight into the morphology of mixed-phase clouds and have important implications for improvement in  representing subgrid inhomogeneity of mixed-phase clouds in weather and climate models.

PDF of Publication: 
Download from publisher's website.
Mission: 
munltiple
Funding Sources: 
Environment Canada