Disclaimer: This material is being kept online for historical purposes. Though accurate at the time of publication, it is no longer being updated. The page may contain broken links or outdated information, and parts may not function in current web browsers. Visit https://espo.nasa.gov for information about our current projects.

 

An overview of UAE2 flight operations: Observations of summertime atmospheric...

Reid, J., S. J. Piketh, A. L. Walker, R. P. Burger, K. E. Ross, D. L. Westphal, R. Bruintjes, B. Holben, N. C. Hsu, T. L. Jensen, R. Kahn, A. P. Kuciauskas, A. A. Mandoos, A. A. Mangoosh, S. D. Miller, J. N. Porter, E. A. Reid, and S. Tsay (2008), An overview of UAE2 flight operations: Observations of summertime atmospheric thermodynamic and aerosol profiles of the southern Arabian Gulf, J. Geophys. Res., 113, D14213, doi:10.1029/2007JD009435.
Abstract: 

In August through September 2004 the United Arab Emirates Unified Aerosol Experiment (UAE2) was conducted in the southern Arabian Gulf region. We present atmospheric thermodynamic and aerosol data collected on 18 flights by the South African Aerocommander aircraft. In the first few kilometers, we observed high concentrations of both regional dust (from 100 to 300 mg m-3 in background, to over 1.5 mg m-3 in events) and ubiquitous sulfate based pollution from the Gulf’s prevalent petroleum industry (10–100 mg m-3). Smoke and pollution from Europe and possibly Africa were found at levels between 1.5 and 5 km. Inland, classic deep over desert boundary layer characteristics were found. Over the Arabian Gulf, dust and pollution were most often either trapped below or sequestered above a strong stable boundary. However, there were cases where a well-distributed aerosol layer crossed the inversion uniformly. Data suggest that the observed vertical profiles can be explained by the rapid formation of stable marine boundary layers as air moves offshore. This can decouple aerosol layers from within the boundary layer to those aloft in regions of vertical wind shear. In the case of pollution, the ability of flaring plumes to penetrate the inversion may also in part determine layering. In coastal regions without vertical wind shear, uniform concentrations with height across the inversion are a result of internal boundary layer development. We conclude that the bulk of the observed variability in particle vertical distribution appear to be controlled by mesoscale and microscale processes, such as the sea/land breeze.

PDF of Publication: 
Download from publisher's website.
Research Program: 
Radiation Science Program (RSP)
Mission: 
UAE2