The ACCLIP website is undergoing a major upgrade that began Friday, October 11th at 5:00 PM PDT. The new upgraded site will be available no later than Monday, October 21st. Until that time, the current site will be visible but logins are disabled.
Peter Pilewskie
Organization:
University of Colorado, Boulder
Business Address:
Laboratory for Atmospheric and Space Physics
Boulder, CO 80303-7819
United StatesFirst Author Publications:
- Pilewskie, P., et al. (2003), Solar spectral radiative forcing during the Southern African Regional Science Initiative, J. Geophys. Res., 108, 8486, doi:10.1029/2002JD002411.
- Pilewskie, P., et al. (2003), Cloud solar spectral irradiance during ARESEII, J. Geophys. Res., D13, doi:10.1029/2002JD002411.
- Pilewskie, P., et al. (2000), The discrepancy between measured and modeled downwelling solar irradiance at the ground: Dependence on water vapor, Geophys. Res. Lett., 27, 137-140.
- Pilewskie, P., and F. Valero (1996), Response to: How much solar radiation do clouds absorb?, Science, 271, 1131-1134.
- Pilewskie, P., and F. Valero (1995), Direct Observation of Excess Solar Absorption by Clouds, Science, 267, 1626.
- Pilewskie, P., and F. Valero (1993), Optical Depths and Haze Particle During AGASP III, Atmos. Environ., 27A, 2895-2899.
- Pilewskie, P., and S. Twomey (1992), Optical Remote Sensing of Ice in Clouds, J Weather Mod., 24, 80.
- Pilewskie, P., and F. Valero (1992), Radiative Effects of the Smoke from the Kuwait Oil Fires, J. Geophys. Res., 97, 14,541.
Co-Authored Publications:
- Coddington, O. M., et al. (2022), The TSIS-1 Hybrid Solar Reference Spectrum, Geophys. Res. Lett..
- Chen, H., et al. (2020), Shortwave Radiative Effect of Arctic Low-Level Clouds: Evaluation of Imagery-Derived Irradiance with Aircraft Observations, Atmos. Meas. Tech., in review, doi:10.5194/amt-2019-344.
- Cochrane, S., et al. (2020), The Dependence of Aerosol Radiative Effects on Spectral Aerosol Properties Derived from Aircraft Measurements: Results from the ORACLES 2016 and ORACLES 2017 Experiments, Atmos. Chem. Phys. (manuscript in preparation).
- Redemann, J., et al. (2020), An overview of the ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS) project: aerosol-cloud-radiation interactions in the Southeast Atlantic basin, Atmos. Chem. Phys. Discuss., doi:10.5194/acp-2020-449.
- Cochrane, S., et al. (2019), Above-cloud aerosol radiative effects based on ORACLES 2016 and ORACLES 2017 aircraft experiments, Atmos. Meas. Tech., 12, 6505-6528, doi:10.5194/amt-12-6505-2019.
- Kahn, R., et al. (2017), SAM-CAAM: A Concept for Acquiring Systematic Aircraft Measurements to Characterize Aerosol Air Masses, Bull. Am. Meteoro. Soc., 2215-2228, doi:10.1175/BAMS-D-16-0003.1.
- Smith, W., et al. (2017), Arctic Radiation-Icebridge Sea And Ice Experiment: The Arctic Radiant Energy System during the Critical Seasonal Ice Transition, Bull. Am. Meteorol. Soc., 1399-1426, doi:10.1175/BAMS-D-14-00277.1.
- Song, S., et al. (2016), The spectral signature of cloud spatial structure in shortwave irradiance, Atmos. Chem. Phys., 16, 13791-13806, doi:10.5194/acp-16-13791-2016.
- Kindel, B. C., et al. (2015), Upper-troposphere and lower-stratosphere water vapor retrievals from the 1400 and 1900 nm water vapor bands, Atmos. Meas. Tech., 8, 1147-1156, doi:10.5194/amt-8-1147-2015.
- Kindel, B. C., et al. (2015), Upper-troposphere and lower-stratosphere water vapor retrievals from the 1400 and 1900 nm water vapor bands, Atmos. Meas. Tech., 8, 1147-1156, doi:10.5194/amt-8-1147-2015.
- LeBlanc, S., et al. (2015), A spectral method for discriminating thermodynamic phase and retrieving cloud optical thickness and effective radius using transmitted solar radiance spectra, Atmos. Meas. Tech., 8, 1361-1383, doi:10.5194/amt-8-1361-2015.
- Wielicki, B., et al. (2013), Achieving Climate Change Absolute Accuracy in Orbit, Bull. Am. Meteorol. Soc., 94, 1519-1539, doi:10.1175/BAMS-D-12-00149.1.
- LeBlanc, S., et al. (2012), Spectral aerosol direct radiative forcing from airborne radiative measurements during CalNex and ARCTAS, J. Geophys. Res., 117, D00V20, doi:10.1029/2012JD018106.
- Roberts, Y. L., et al. (2012), Quantitative Comparison of the Variability in Observed and Simulated Shortwave Reflectance, Atmos. Chem. Phys., 13, 3133-3147, doi:10.5194/acp-13-3133-2013.
- Brock, C., et al. (2011), Characteristics, sources, and transport of aerosols measured in spring 2008 during the aerosol, radiation, and cloud processes affecting Arctic Climate (ARCPAC) Project, Atmos. Chem. Phys., 11, 2423-2453, doi:10.5194/acp-11-2423-2011.
- Feldman, D., et al. (2011), Simulation studies for the detection of changes in broadband albedo and shortwave nadir reflectance spectra under a climate change scenario, J. Geophys. Res., 116, D24103, doi:10.1029/2011JD016407.
- Kindel, B. C., et al. (2011), Solar spectral absorption by marine stratus clouds: Measurements and modeling, J. Geophys. Res., 116, D10203, doi:10.1029/2010JD015071.
- Roberts, Y. L., P. Pilewskie, and B. C. Kindel (2011), Evaluating the observed variability in hyperspectral Earth‐reflected solar radiance, J. Geophys. Res., 116, D24119, doi:10.1029/2011JD016448.
- Bergstrom, R. W., et al. (2010), Aerosol spectral absorption in the Mexico City area: results from airborne measurements during MILAGRO/INTEX B, Atmos. Chem. Phys., 10, 6333-6343, doi:10.5194/acp-10-6333-2010.
- Bucholtz, A., et al. (2010), Directly measured heating rates of a tropical subvisible cirrus cloud, J. Geophys. Res., 115, D00J09, doi:10.1029/2009JD013128.
- Coddington, O. M., et al. (2010), Examining the impact of overlying aerosols on the retrieval of cloud optical properties from passive remote sensing, J. Geophys. Res., 115, D10211, doi:10.1029/2009JD012829.
- Kindel, B. C., et al. (2010), Observations and modeling of ice cloud shortwave spectral albedo during the Tropical Composition, Cloud and Climate Coupling Experiment (TC4), J. Geophys. Res., 115, D00J18, doi:10.1029/2009JD013127.
- Schmidt, S., et al. (2010), A new method for deriving aerosol solar radiative forcing and its first application within MILAGRO/INTEX-B, Atmos. Chem. Phys., 10, 7829-7843, doi:10.5194/acp-10-7829-2010.
- Schmidt, S., et al. (2010), Apparent absorption of solar spectral irradiance in heterogeneous ice clouds, J. Geophys. Res., 115, D00J22, doi:10.1029/2009JD013124.
- Livingston, J. M., et al. (2009), Comparison of aerosol optical depths from the Ozone Monitoring Instrument (OMI) on Aura with results from airborne sunphotometry, other space and ground measurements during MILAGRO/INTEX-B, Atmos. Chem. Phys., 9, 6743-6765, doi:10.5194/acp-9-6743-2009.
- Coddington, O. M., et al. (2008), Aircraft measurements of spectral surface albedo and its consistency with ground-based and space-borne observations, J. Geophys. Res., 113, D17209, doi:10.1029/2008JD010089.
- Bergstrom, R. W., et al. (2007), Spectral absorption properties of atmospheric aerosols, Atmos. Chem. Phys., 7, 5937-5943, doi:10.5194/acp-7-5937-2007.
- Chai, T., et al. (2007), Four-dimensional data assimilation experiments with International Consortium for Atmospheric Research on Transport and Transformation ozone measurements, J. Geophys. Res., 112, D12S15, doi:10.1029/2006JD007763.
- Feingold, G., et al. (2006), Aerosol indirect effect studies at Southern Great Plains during the May 2003 Intensive Operations period, J. Geophys. Res., 111, D05S14, doi:10.1029/2004JD005648.
- Redemann, J., et al. (2006), Airborne measurements of spectral direct aerosol radiative forcing in the Intercontinental chemical Transport Experiment/Intercontinental Transport and Chemical Transformation of anthropogenic pollution, 2004, J. Geophys. Res., 111, D14210, doi:10.1029/2005JD006812.
- Bergstrom, R. W., et al. (2004), Spectral absorption of solar radiation by aerosols during ACE-Asia, J. Geophys. Res., 109, D19S15, doi:10.1029/2003JD004467.
- Wendisch, M., et al. (2004), Airborne measurements of areal spectral surface albedo over different sea and land surfaces, J. Geophys. Res., 109, doi:10.1029/2003JD004392.
- Hobbs, P. V., et al. (2003), Evolution of gases and particles from a savanna fire in South Africa, J. Geophys. Res., 108, doi:10.1029/2002JD002352.
- Michalsky, J., et al. (2003), Simultaneous spectral albedo measurements near the Atmospheric Radiation Measurement Southern Great Plains (ARM SGP) central facility, J. Geophys. Res., 108, doi:10.1029/2002JD002906.
- Reid, J. S., et al. (2003), Measurements of Saharan dust by airborne and ground-based remote sensing methods during the Puerto Rico Dust Experiment (PRIDE), J. Geophys. Res., 108, 8586, doi:10.1029/2002JD002493.
- Reid, J., et al. (2003), Analysis of measurements of Saharan dust by airborne and groundbased remote sensing methods during the Puerto Rico Dust Experiment (PRIDE), J. Geophys. Res., 108, 8586, doi:10.1029/2002JD002493.
- Rabbette, M., and P. Pilewskie (2002), Principal component analysis of Arctic solar irradiance spectra, J. Geophys. Res., 107, . (Oceans), doi:10.1029/2000JC000566.
- Rabbette, M., and P. Pilewskie (2001), Multivariate analysis of solar spectral irradiance measurements, J. Geophys. Res., 106, 9685-9696.
- Bergstrom, R. W., et al. (2000), Estimates of the spectral aerosol single scattering albedo and aerosol radiative effects during SAFARI, J. Geophys. Res., 108, 2003, doi:10.1029/2002JD002435.
- Curry, J. A., et al. (2000), FIRE Arctic clouds experiment., Bulletin of the American Meteorlogical Society, 81, 5.
- Marshak, A., et al. (2000), Cloud – vegetation interaction: use of Normalized Difference Cloud Index for estimation of cloud optical thickness, Geophys. Res. Lett., 27, 1695-1698, doi:10.1029/1999GL010993.
- Stephens, G., et al. (2000), The Department of Energy’s Atmospheric Radiation Measurement (ARM) Unmanned Aerospace Vehicle (UAV) Program, Bulletin of the American Meteorlogical Society, 81, 2915.
- Dong, X., et al. (1997), Microphysical and radiative properties of boundary layer stratiform clouds deduced from ground-based measurements, J. Geophys. Res., 102.D20, 23829-23843.
- Clark, A. D., et al. (1996), "Vertical profiles, aerosol microphysics and optical closure during ASTEX: Measured and modeled column optical properties, J. Geophys. Res., 101, 4443-4453.
- Collins, W. D., et al. (1996), Radiative effects of convection in the tropical Pacific, J. of Clim., 101, 14,999-15.
- Lubin, D., et al. (1996), Microphysical examination of excess cloud absorption in the tropical atmosphere, J. Geophys. Res., D12, 16,961-16.
- Westphal, D. L., et al. (1996), Initialization and validation of a simulation of cirrus using FIRE-II Data, J. Atmos. Sci., 53, 3397-3429.
- Russell, P. B., et al. (1993), Pinatubo and Pre-Pinatubo Optical Depth Spectra: Mauna Loa Measurements, Comparisons, Inferred Particle Size Distributions, Radiative Effects, and Relationship to Lidar Data, J. Geophys. Res., 98, 22,969-22.
- Valero, F., et al. (1993), Airborne Brightness Temperature Measurements of the Polar Winter Troposphere as Part of the Airborne Stratospheric Experiment II and the Effect of Brightness Temperature Variations on the Diabatic Heating in the Lower Stratosphere, Geophys. Res. Lett., 20, 2575-2578.
- Valero, F., and P. Pilewskie (1992), Latitudinal Survey of Spectral Optical Depths of the Pinatubo Volcanic Cloud-Derived Particle Sizes, Columnar Mass Loadings and Effects on Planetary Albedo, Geophys. Res. Lett., 19, 163.
- Valero, F., and P. Pilewskie (1991), Radiative Effects of the Pinatubo Volcanic Cloud--Spectral Optical Depth, Albedo Changes and Particle Sizes, Geophys. Res. Lett..
Note: Only publications that have been uploaded to the
ESD Publications database are listed here.