The ACCLIP website is undergoing a major upgrade that began Friday, October 11th at 5:00 PM PDT. The new upgraded site will be available no later than Monday, October 21st. Until that time, the current site will be visible but logins are disabled.
Mark R. Schoeberl
Business Address:
10015 Old Columbia Rd.
Suite E-250
Columbia, MD 21046
United StatesFirst Author Publications:
- Schoeberl, M. R., et al. (2024), The Estimated Climate Impact of the Hunga Tonga-Hunga Ha'apai Eruption Plume, Geophys. Res. Lett..
- Schoeberl, M. R., et al. (2024), The Cross Equatorial Transport of the Hunga Tonga-Hunga Ha'apai Eruption Plume, Geophys. Res. Lett..
- Schoeberl, M. R., et al. (2023), Analysis and Impact of the Hunga Tonga-Hunga Ha'apai Stratospheric Water Vapor Plume, Geophys. Res. Lett..
- Schoeberl, M. R., et al. (2023), Analysis and Impact of the Hunga Tonga-Hunga Ha'apai Stratospheric Water Vapor Plume, Geophys. Res. Lett..
- Schoeberl, M. R., R. Ueyama, and L. Pfister (2022), A Lagrangian View of Seasonal Stratosphere-Troposphere Exchange, J. Geophys. Res., 127, e2022JD036772, doi:10.1029/2022JD036772.
- Schoeberl, M. R., et al. (2022), Cloud and Aerosol Distributions From SAGE III/ISS Observations, J. Geophys. Res..
- Schoeberl, M. R., et al. (2019), Water Vapor, Clouds, and Saturation in the Tropical Tropopause Layer, J. Geophys. Res., 124, doi:10.1029/2018JD029849.
- Schoeberl, M. R., et al. (2018), Convective Hydration of the Upper Troposphere and Lower Stratosphere, J. Geophys. Res., 123, 4583-4593, doi:.org/10.1029/2018JD028286.
- Schoeberl, M. R., A. Dessler, and T. Wang (2013), Modeling upper tropospheric and lower stratospheric water vapor anomalies, Atmos. Chem. Phys., 13, 7783-7793, doi:10.5194/acp-13-7783-2013.
- Schoeberl, M. R., A. Dessler, and T. Wang (2012), Simulation of stratospheric water vapor and trends using three reanalyses, Atmos. Chem. Phys., 12, 6475-6487, doi:10.5194/acp-12-6475-2012.
- Schoeberl, M. R., and A. Dessler (2011), Dehydration of the stratosphere, Atmos. Chem. Phys., 11, 8433-8446, doi:10.5194/acp-11-8433-2011.
- Schoeberl, M. R., et al. (2008), Comparison of lower stratospheric tropical mean vertical velocities, J. Geophys. Res., 113, D24109, doi:10.1029/2008JD010221.
- Schoeberl, M. R., et al. (2007), A trajectory-based estimate of the tropospheric ozone column using the residual method, J. Geophys. Res., 112, D24S49, doi:10.1029/2007JD008773.
- Schoeberl, M. R., et al. (2006), The carbon monoxide tape recorder, Geophys. Res. Lett., 33, L12811, doi:10.1029/2006GL026178.
- Schoeberl, M. R., et al. (1990), Stratospheric Constituent Trends from ER-2 Profile Data, Geophys. Res. Lett., 17, 469-472.
- Schoeberl, M. R., et al. (1989), Reconstruction of the Constituent Distribution and Trends in the Antarctic Polar Vortex from the ER-2 Flight Observation, J. Geophys. Res., 94, 16,815-16.
Co-Authored Publications:
- Ueyama, R., et al. (2023), Convective Impact on the Global Lower Stratospheric Water Vapor Budget, J. Geophys. Res., 128, e2022JD037135, doi:10.1029/2022JD037135.
- Pfister, L., et al. (2022), Deep Convective Cloud Top Altitudes at High Temporal and Spatial Resolution, Earth and Space, 1, 22.
- Ueyama, R., et al. (2020), Impact of Convectively Detrained Ice Crystals on the Humidity of the Tropical Tropopause Layer in Boreal Winter, J. Geophys. Res., 125, 1-17, doi:10.1029/2020JD032894.
- Wang, X., et al. (2019), Impact of convectively lofted ice on the seasonal cycle of water vapor in the tropical tropopause layer, Atmos. Chem. Phys., 19, 14621-14636, doi:10.5194/acp-19-14621-2019.
- Jensen, E., et al. (2017), The NASA Airborne Tropical TRopopause EXperiment (ATTREX): High-altitude aircraft measurements in the tropical western Pacific, Bull. Am. Meteorol. Soc., 12/2015, 129-144, doi:10.1175/BAMS-D-14-00263.1.
- Dessler, A., et al. (2016), Transport of ice into the stratosphere and the humidification of the stratosphere over the 21st century, Geophys. Res. Lett., 43, 2323-2329, doi:10.1002/2016GL067991.
- Jensen, E., et al. (2016), High-frequency gravity waves and homogeneous ice nucleation in tropical tropopause layer cirrus, Geophys. Res. Lett., 43, 6629-6635, doi:10.1002/2016GL069426.
- Ziemke, J. R., et al. (2014), Assessment and applications of NASA ozone data products derived from Aura OMI/MLS satellite measurements in context of the GMI chemical transport model, J. Geophys. Res., 119, 5671-5699, doi:10.1002/2013JD020914.
- Doughty, D. C., et al. (2011), An intercomparison of tropospheric ozone retrievals derived from two Aura instruments and measurements in western North America in 2006, J. Geophys. Res., 116, D06303, doi:10.1029/2010JD014703.
- Jiang, J., et al. (2011), Influence of convection and aerosol pollution on ice cloud particle effective radius, Atmos. Chem. Phys., 11, 457-463, doi:10.5194/acp-11-457-2011.
- Su, H., et al. (2011), Observed Increase of TTL Temperature and Water Vapor in Polluted Clouds over Asia, J. Climate, 24, 2728-2736, doi:10.1175/2010JCLI3749.1.
- Krotkov, N., et al. (2010), Dispersion and lifetime of the SO2 cloud from the August 2008 Kasatochi eruption, J. Geophys. Res., 115, D00L20, doi:10.1029/2010JD013984.
- Toon, B., et al. (2010), Planning, implementation, and first results of the Tropical Composition, Cloud and Climate Coupling Experiment (TC4), J. Geophys. Res., 115, D00J04, doi:10.1029/2009JD013073.
- Jiang, J., et al. (2009), Aerosol-CO relationship and aerosol effect on ice cloud particle size: Analyses from Aura Microwave Limb Sounder and Aqua Moderate Resolution Imaging Spectroradiometer observations, J. Geophys. Res., 114, D20207, doi:10.1029/2009JD012421.
- Joiner, J., et al. (2009), Accurate satellite-derived estimates of the tropospheric ozone impact on the global radiation budget, Atmos. Chem. Phys., 9, 4447-4465, doi:10.5194/acp-9-4447-2009.
- Strahan, S., M. R. Schoeberl, and S. D. Steenrod (2009), The impact of tropical recirculation on polar composition, Atmos. Chem. Phys., 9, 2471-2480, doi:10.5194/acp-9-2471-2009.
- Witte, J. C., et al. (2009), Satellite observations of changes in air quality during the 2008 Beijing Olympics and Paralympics, Geophys. Res. Lett., 36, L17803, doi:10.1029/2009GL039236.
- Ziemke, J. R., et al. (2009), Ozone mixing ratios inside tropical deep convective clouds from OMI satellite measurements, Atmos. Chem. Phys., 9, 573-583, doi:10.5194/acp-9-573-2009.
- Ziemke, J. R., et al. (2009), Recent biomass burning in the tropics and related changes in tropospheric ozone, Geophys. Res. Lett., 36, L15819, doi:10.1029/2009GL039303.
- Douglass, A., et al. (2008), Relationship of loss, mean age of air and the distribution of CFCs to stratospheric circulation and implications for atmospheric lifetimes, J. Geophys. Res., 113, D14309, doi:10.1029/2007JD009575.
- Jiang, J., et al. (2008), Clean and polluted clouds: Relationships among pollution, ice clouds, and precipitation in South America, Geophys. Res. Lett., 35, L14804, doi:10.1029/2008GL034631.
- Witte, J. C., et al. (2008), The Quasi-biennial Oscillation and annual variations in tropical ozone from SHADOZ and HALOE, Atmos. Chem. Phys., 8, 3929-3936, doi:10.5194/acp-8-3929-2008.
- Canty, T., et al. (2005), Nighttime OClO in the winter Arctic vortex, J. Geophys. Res., 110, D01301, doi:10.1029/2004JD005035.
- Colarco, P. R., et al. (2004), Transport of smoke from Canadian forest fires to the surface near Washington, D.C.: Injection height, entrainment, and optical properties, J. Geophys. Res., 109, D06203, doi:10.1029/2003JD004248.
- Drdla, K., and M. R. Schoeberl (2003), Microphysical modeling of the 1999–2000 Arctic winter 2. Chlorine activation and ozone depletion, J. Geophys. Res., 108, 8319, doi:10.1029/2001JD001159.
- Drdla, K., M. R. Schoeberl, and E. Browell (2003), Microphysical modeling of the 1999–2000 Arctic winter: 1. Polar stratospheric clouds, denitrification, and dehydration, J. Geophys. Res., 108, 8312, doi:10.1029/2001JD000782.
- Herman, R. L., et al. (2003), Hydration, dehydration, and the total hydrogen budget of the 1999/2000 winter Arctic stratosphere, J. Geophys. Res., 108, 8320, doi:10.1029/2001JD001257.
- Kawa, S. R., et al. (2003), Interaction between dynamics and chemistry of ozone in the setup phase of the Northern Hemisphere polar vortex, J. Geophys. Res., 108, 8310, doi:10.1029/2001JD001527.
- Pfister, L., et al. (2003), Processes controlling water vapor in the winter Arctic tropopause region, J. Geophys. Res., 108, 8314, doi:10.1029/2001JD001067.
- Drdla, K., and M. R. Schoeberl (2002), Chlorine activation and ozone depletion during the winter of 1999-2000, J. Geophys. Res., 107, 8319, doi:10.1029/2001JD001159.
- Newman, P., et al. (2002), An overview of the SOLVE/THESEO 2000 campaign, J. Geophys. Res., 107, 20.
- Tabazadeh, A., et al. (2002), Arctic ‘‘ozone hole’’ in a cold volcanic stratosphere, Proc. Natl. Acad. Sci., 99, 2609-2612, doi:10.1073/pnas.052518199.
- Newman, P., et al. (2001), Chance encounter with a stratospheric kerosene rocket plume from Russia over California, Geophys. Res. Lett., 28, 959-962.
- Pfister, L., et al. (2001), Aircraft observations of thin cirrus clouds near the Tropical Tropopause, J. Geophys. Res., 106, 9765-9786.
- Tabazadeh, A., et al. (2001), Role of the Stratospheric Polar Freezing Belt in Denitrification, Science, 291, 2591-2594.
- Newman, P., et al. (1996), Measurements of polar vortex air in the midlatitudes, J. Geophys. Res., 101, 12,879-12.
- Tabazadeh, A., et al. (1996), Observational constraints on the formation of Type Ia polar stratospheric clouds, Geophys. Res. Lett., 23, 2109-2112.
- Plumb, R. A., et al. (1994), Intrusions Into the Lower Stratospheric Arctic Vortex During the Winter of 1991-1992, J. Geophys. Res., 99.D1, 1089-1105.
- Waugh, D., et al. (1994), Fine-Scale Poleward Transport of Tropical Air During AASE 2, Geophys. Res. Lett., 21, 2603-2606.
- Waugh, D., et al. (1994), Transport out of the Lower Stratospheric Arctic Vortex by Rossby Wave Breaking, J. Geophys. Res., 99.D1, 1071-1088.
- Browell, E., et al. (1993), Ozone and aerosol changes observed during the 1991-92 Airborne Arctic Stratospheric Expedition, Science, 261, 1155-1158.
- Fahey, D., et al. (1993), In Situ Measurements Constraining the Role of Sulphate Aerosols in Mid-Latitude Ozone Depletion, Nature, 363, 509-514.
- Loewenstein, M., et al. (1993), New Observations of the NOy/N2O Correlation in the Lower Stratosphere, Geophys. Res. Lett., 20, 2531-2534, doi:10.1029/93GL03004.
- Russell, P. B., et al. (1993), Post-Pinatubo Optical Depth Spectra vs. Latitude, and Vortex Structure: Airborne Tracking Sunphotometer Measurements in AASE II, Geophys. Res. Lett., 20, 2571-2574.
- Salawitch, R., et al. (1993), Chemical Loss of Ozone in the Arctic Polar Vortex in the Winter of 1991-1992, Science, 261, 1146-1149.
- Toon, B., et al. (1993), Heterogeneous Reaction Probabilities, Solubilities, and the Physical State of Cold Volcanic Aerosols, Science, 261, 1136-1140.
- Webster, C. R., et al. (1993), Chlorine chemistry on polar stratospheric cloud particles in the Arctic winter, Science, 261, 1140-1143.
- Bacmeister, J., et al. (1992), An Estimate of the Relative Magnitude of Small-Scale Tracer Fluxes, Geophys. Res. Lett., 19, 1101-1104.
- Browell, E., et al. (1990), Airborne Lidar Observations in the Wintertime Arctic Stratosphere: Ozone, Geophys. Res. Lett., 17, 325-328.
- Browell, E., et al. (1990), Airborne Lidar Observations in the Wintertime Arctic Stratosphere: Polar stratospheric clouds, Geophys. Res. Lett., 17, 385-388.
- Douglass, A., et al. (1990), Global Three-Dimensional Constituent Fields Derived From Profile Data, Geophys. Res. Lett., 17, 525-528.
- Lait, L. R., et al. (1990), Reconstruction of O3 and N2O fields from ER-2, DC-8, and Balloon Observations, Geophys. Res. Lett., 17, 521-524.
- Salawitch, R., et al. (1990), Loss of Ozone in the Polar Vortex for the Winter of 1989, Geophys. Res. Lett., 17, 561-164.
- Yatteau, J. H., et al. (1990), Newman, A. Torres, T. Jorgensen, W. G. Mankin, M. T. Coffey, G. C. Toon, M. Loewenstein, J. R. Podolske, S. E. Strahan, K. R. Chan, and M. H. Proffitt, Geophys. Res. Lett., 17, 533-536.
Note: Only publications that have been uploaded to the
ESD Publications database are listed here.