The ACCLIP website will be undergoing a major upgrade beginning Friday, October 11th at 5:00 PM PDT. The new upgraded site will be available no later than Monday, October 21st. Please plan to complete any critical activities before or after this time.
Home > Christian Frankenberg
Christian Frankenberg
Organization:
California Institute of Technology
Jet Propulsion Laboratory
First Author Publications:
- Frankenberg, C., et al. (2024), Data Drought in the Humid Tropics: How to Overcome the Cloud Barrier in Greenhouse Gas Remote Sensing, Geophys. Res. Lett., 51, e2024GL108791, doi:10.1029/2024GL108791.
- Frankenberg, C., et al. (2018), The Chlorophyll Fluorescence Imaging Spectrometer (CFIS), mapping far red T fluorescence from aircraft, Remote Sensing of Environment, 217, 523-536, doi:10.1016/j.rse.2018.08.032.
- Frankenberg, C., et al. (2015), The Orbiting Carbon Observatory (OCO-2): spectrometer performance evaluation using pre-launch direct sun measurements, Atmos. Meas. Tech., 8, 301-313, doi:10.5194/amt-8-301-2015.
- Frankenberg, C., et al. (2014), The Orbiting Carbon Observatory (OCO-2): spectrometer performance evaluation using pre-launch direct sun measurements, Atmos. Meas. Tech., 7, 1-10, doi:10.5194/amt-7-1-2014.
Co-Authored Publications:
- Wang, Y., et al. (2024), Beyond the visible: Accounting for ultraviolet and far-red radiation in vegetation productivity and surface energy budgets, doi:10.1111/gcb.17346.
- Wang, Y., and C. Frankenberg (2024), Toward More Accurate Modeling of Canopy Radiative Transfer and Leaf Electron Transport in Land Surface Modeling, Earth's Future, 16, e2023MS003992, doi:10.1029/2023MS003992.
- Yao, Y., et al. (2024), Investigating Diurnal and Seasonal Cycles of Vegetation Optical Depth Retrieved From GNSS Signals in a Broadleaf Forest, Geophys. Res. Lett., 51, e2023GL107121, doi:10.1029/2023GL107121.
- Humphrey, V., and C. Frankenberg (2023), Continuous ground monitoring of vegetation optical depth and water content with GPS signals, Biogeosciences, doi:10.5194/bg-20-1789-2023.
- Jacob, D. J., et al. (2023), Quantifying methane emissions from the global scale down to point sources using satellite observations of atmospheric methane, Atmos. Chem. Phys., doi:10.5194/acp-22-9617-2022.
- Luis, K., et al. (2023), First Light Demonstration of Red Solar Induced Fluorescence for Harmful Algal Bloom Monitoring, Geophys. Res. Lett..
- Yin, Y., et al. (2023), Authors, some Unequal exposure to heatwaves in Los Angeles: Impact rights reserved; exclusive licensee of uneven green spaces American Association for the Advancement of Science. No claim to, Yin et al., Sci. Adv., 9, 2023.
- Turner, A. J., et al. (2021), Observed Impacts of COVID-19 on Urban CO2 Emissions, Geophys. Res. Lett..
- Yin, Y., et al. (2021), Fire decline in dry tropical ecosystems enhances decadal land carbon sink, Nature, doi:10.1038/s41467-020-15852-2.
- Nguyen, N. H., et al. (2020), Effects of Chemical Feedbacks on Decadal Methane Emissions Estimates, Geophys. Res. Lett., 47, 1-13, doi:10.1029/2019GL085706.
- Peng, B., et al. (2020), Assessing the benefit of satellite-based Solar-Induced Chlorophyll T Fluorescence in crop yield prediction, Int J Appl Earth Obs Geoinformation, 90, 102126, doi:10.1016/j.jag.2020.102126.
- Turner, A. J., et al. (2020), manuscript submitted to Geophysical Research Letters Extreme events driving year-to-year differences in gross primary productivity across the US, CC_BY_NC_ND_4.0 , First posted online: Tue, 36, doi:10.1002/essoar.10504378.1.
- Turner, A. J., et al. (2020), A double peak in the seasonality of California’s photosynthesis as observed from space, Biogeosciences, 17, 405-422, doi:10.5194/bg-17-405-2020.
- Whelan, M., et al. (2020), Two scientific communities striving for a common cause: innovations in carbon cycle science, Bull. Am. Meteorol. Soc., doi:10.1175/BAMS-D-19-0306.1.
- Yin, Y., et al. (2020), This is an open access article under the terms of the Creative Commons Attribution‐NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes., Agu, 1, 15.
- Yin, Y., et al. (2020), Fire decline in dry tropical ecosystems enhances decadal land carbon sink, Nature, doi:10.1038/s41467-020-15852-2.
- Zhang, Z., et al. (2020), The potential of satellite FPAR product for GPP estimation: An indirect T evaluation using solar-induced chlorophyll fluorescence ⁎, Remote Sensing of Environment, 240, 111686, doi:10.1016/j.rse.2020.111686.
- Bacour, C., et al. (2019), Differences Between OCO‐2 and GOME‐2 SIF Products From a Model‐Data Fusion Perspective, J. Geophys. Res., 124, 3143-3157, doi:10.1029/2018JG004938.
- Cusworth, D., et al. (2019), Potential of next-generation imaging spectrometers to detect and quantify methane point sources from space, Atmos. Meas. Tech., 12, 5655-5668, doi:10.5194/amt-12-5655-2019.
- Magney, T. S., et al. (2019), Mechanistic evidence for tracking the seasonality of photosynthesis with solar-induced fluorescence, Proc. Natl. Acad. Sci., 116, 11640-11645, doi:10.1073/pnas.1900278116.
- Magney, T. S., et al. (2019), Mechanistic evidence for tracking the seasonality of photosynthesis with solar-induced fluorescence, Proc. Natl. Acad. Sci., doi:10.
- Mohammeda, G. H., et al. (2019), Remote sensing of solar-induced chlorophyll fluorescence (SIF) in T vegetation: 50 years of progress, Remote Sensing of Environment, 231, 111177, doi:10.1016/j.rse.2019.04.030.
- Parazoo, N., et al. (2019), Towards a harmonized long‐term spaceborne record of far‐red solar‐induced fluorescence, J. Geophys. Res., 124, 2518-2539.
- Raczka, B., et al. (2019), lead to differences between this version and the Version of Record. Please cite this article as, J. Geophys. Res., doi:10.1029/2018JG004883.
- Köehler, P., et al. (2018), Global retrievals of solar-induced chlorophyll fluorescence with TROPOMI: First results and intersensor comparison to OCO-2, Geophys. Res. Lett., 45, 10,456-10,463, doi:10.1029/2018GL079031.
- O'Dell, C., et al. (2018), Improved retrievals of carbon dioxide from Orbiting Carbon Observatory-2 with the version 8 ACOS algorithm, Atmos. Meas. Tech., 11, 6539-6576, doi:10.5194/amt-11-6539-2018.
- Sun, Y., et al. (2018), Overview of Solar-Induced chlorophyll Fluorescence (SIF) from the Orbiting T Carbon Observatory-2: Retrieval, cross-mission comparison, and global monitoring for GPP ⁎ ⁎⁎, Remote Sensing of Environment, 209, 808-823, doi:10.1016/j.rse.2018.02.016.
- Zuromski, L. M., et al. (2018), Solar-Induced Fluorescence Detects Interannual Variation in Gross Primary Production of Coniferous Forests in the Western United States, Geophys. Res. Lett., 45, doi:10.1029/2018GL077906.
- Crisp, D., et al. (2017), The on-orbit performance of the Orbiting Carbon Observatory-2 (OCO-2) instrument and its radiometrically calibrated products, Atmos. Meas. Tech., 10, 59-81, doi:10.5194/amt-10-59-2017.
- Eldering, A., et al. (2017), R ES E A RC H | R E MO T E S E NS I NG, Science, 358, eaam5745, doi:10.1126/science.aam5745.
- Eldering, A., et al. (2017), The Orbiting Carbon Observatory-2: first 18 months of science data products, Atmos. Meas. Tech., 10, 549-563, doi:10.5194/amt-10-549-2017.
- Lee, R. A. M., et al. (2017), Preflight Spectral Calibration of the Orbiting Carbon Observatory 2, IEEE Trans. Geosci. Remote Sens., 55, 2499-2508, doi:10.1109/TGRS.2016.2645614.
- Liu, J., et al. (2017), R ES E A RC H | R E MO T E S E NS I NG, Science, 358, eaam5690, doi:10.1126/science.aam5690.
- Luus, K. A., et al. (2017), Tundra photosynthesis captured by satellite-observed solar-induced chlorophyll fluorescence, Geophys. Res. Lett., 44, 1564-1573, doi:10.1002/2016GL070842.
- Sun, K., et al. (2017), Characterization of the OCO-2 instrument line shape functions using on-orbit solar measurements, Atmos. Meas. Tech., 10, 939-953, doi:10.5194/amt-10-939-2017.
- Sun, Y., et al. (2017), R ES E A RC H | R E MO T E S E NS I NG, Science, 358, 189, doi:10.1126/science.aam5747.
- Verma, M., et al. (2017), Effect of environmental conditions on the relationship between solar-induced fluorescence and gross primary productivity at an OzFlux grassland site, J. Geophys. Res., 122, 716-733, doi:10.1002/2016JG003580.
- Worden, J., et al. (2017), Evaluation and attribution of OCO-2 XCO2 uncertainties, Atmos. Meas. Tech., 10, 2759-2771, doi:10.5194/amt-10-2759-2017.
- Kulawik, S., et al. (2016), Consistent evaluation of ACOS-GOSAT, BESD-SCIAMACHY, CarbonTracker, and MACC through comparisons to TCCON, Atmos. Meas. Tech., 9, 683-709, doi:10.5194/amt-9-683-2016.
- Taylor, T. E., et al. (2016), Orbiting Carbon Observatory-2 (OCO-2) cloud screening algorithms: validation against collocated MODIS and CALIOP data, Atmos. Meas. Tech., 9, 973-989, doi:10.5194/amt-9-973-2016.
- Joiner, J., et al. (2013), Global monitoring of terrestrial chlorophyll fluorescence from moderate-spectral-resolution near-infrared satellite measurements: methodology, simulations, and application to GOME-2, Atmos. Meas. Tech., 6, 2803-2823, doi:10.5194/amt-6-2803-2013.
- Kuai, L., et al. (2013), Profiling tropospheric CO2 using Aura TES and TCCON instruments, Atmos. Meas. Tech., 6, 63-79.
- Mandrake, L., et al. (2013), Semi-autonomous sounding selection for OCO-2, Atmos. Meas. Tech., 6, 2851-2864, doi:10.5194/amt-6-2851-2013.
- Oshchepkov, S., et al. (2013), Effects of atmospheric light scattering on spectroscopic observations of greenhouse gases from space. Part 2: Algorithm intercomparison in the GOSAT data processing for CO2 retrievals over TCCON sites, J. Geophys. Res., 118, 1493-1512, doi:10.1002/jgrd.50146.
- Worden, H., et al. (2013), Decadal record of satellite carbon monoxide observations, Atmos. Chem. Phys., 13, 837-850, doi:10.5194/acp-13-837-2013.
- Lee, J., et al. (2012), Asian monsoon hydrometeorology from TES and SCIAMACHY water vapor isotope measurements and LMDZ simulations: Implications for speleothem climate record interpretation, J. Geophys. Res., 117, D15112, doi:10.1029/2011JD017133.
- O'Dell, C., et al. (2012), The ACOS CO2 retrieval algorithm – Part 1: Description and validation against synthetic observations, Atmos. Meas. Tech., 5, 99-121, doi:10.5194/amt-5-99-2012.
- Risi, C., et al. (2012), Process-evaluation of tropospheric humidity simulated by general circulation models using water vapor isotopologues: 1. Comparison between models and observations, J. Geophys. Res., 117, D05303, doi:10.1029/2011JD016621.
- Butz, A., et al. (2011), Toward accurate CO2 and CH4 observations from GOSAT, Geophys. Res. Lett., 38, L14812, doi:10.1029/2011GL047888.
Note: Only publications that have been uploaded to the
ESD Publications database are listed here.