The ACCLIP website will be undergoing a major upgrade beginning Friday, October 11th at 5:00 PM PDT. The new upgraded site will be available no later than Monday, October 21st. Please plan to complete any critical activities before or after this time.
Andrea Corral
Business Address:
Tucson, AZ 85721
United StatesFirst Author Publications:
- Corral, A., et al. (2023), Environmental Science: Atmospheres View Article Online PAPER View Journal Dimethylamine in cloud water: a case study over, The Author(s). Published by the Royal Society of Chemistry Environ. Sci.: Atmos, 10.1039/D2EA00117A, doi:10.1039/d2ea00117a.
- Corral, A., et al. (2022), Cold Air Outbreaks Promote New Particle Formation Off the U.S. East Coast, Geophys. Res. Lett..
- Corral, A., et al. (2021), Source Apportionment of Aerosol at a Coastal Site and Relationships with Precipitation Chemistry: A Case Study over the Southeast United States, doi:10.3390/atmos11111212.
- Corral, A., et al. (2021), All Rights Reserved. An Overview of Atmospheric Features Over the Western North Atlantic Ocean and North American East Coast – Part 1: Analysis of Aerosols, Gases, and Wet Deposition Chemistry, J. Geophys. Res., 126, e2020JD032592, doi:10.1029/2020JD032592.
Co-Authored Publications:
- Li, X., et al. (2024), Process Modeling of Aerosol‐Cloud Interaction in Summertime Precipitating Shallow Cumulus Over the Western North Atlantic, J. Geophys. Res., 129, e2023JD039489, doi:10.1029/2023JD039489.
- Brunke, M. A., et al. (2023), Aircraft Observations of Turbulence in Cloudy and Cloud-Free Boundary Layers Over the Western North Atlantic Ocean From ACTIVATE and Implications for the Earth System Model Evaluation and Development, J. Geophys. Res..
- Li, X., et al. (2023), Large-Eddy Simulations of Marine Boundary Layer Clouds Associated with Cold-Air Outbreaks during the ACTIVATE Campaign. Part II: Aerosol–Meteorology–Cloud Interaction, J. Atmos. Sci., 80, 1025-1045, doi:10.1175/JAS-D-21-0324.1.
- Sorooshian, A., et al. (2023), Spatially coordinated airborne data and complementary products for aerosol, gas, cloud, and meteorological studies: the NASA ACTIVATE dataset, Earth Syst. Sci. Data, 15, 3419-3472, doi:10.5194/essd-15-3419-2023.
- Dadashazar, H., et al. (2022), Analysis of MONARC and ACTIVATE Airborne Aerosol Data for Aerosol-Cloud Interaction Investigations: Efficacy of Stairstepping Flight Legs for Airborne In Situ Sampling, hosseind@arizona.edu (H.D.armin@arizona.edu (A.S., 13, 1242, doi:10.3390/atmos13081242.
- Dadashazar, H., et al. (2022), Organic enrichment in droplet residual particles relative to out of cloud over the northwestern Atlantic: analysis of airborne ACTIVATE data, Atmos. Chem. Phys., doi:10.5194/acp-22-13897-2022.
- Gonzalez, M., et al. (2022), Relationships between supermicrometer particle concentrations and cloud water sea salt and dust concentrations: analysis of MONARC and ACTIVATE data, Environmental Science: Atmospheres, doi:10.1039/d2ea00049k.
- Hilario, M., et al. (2022), Particulate Oxalate-To-Sulfate Ratio as an Aqueous Processing Marker: Similarity Across Field Campaigns and Limitations, Geophys. Res. Lett..
- Kirschler, S., et al. (2022), Seasonal updraft speeds change cloud droplet number concentrations in low-level clouds over the western North Atlantic, Atmos. Chem. Phys., doi:10.5194/acp-22-8299-2022.
- Dadashazar, H., et al. (2021), Cloud drop number concentrations over the western North Atlantic Ocean: seasonal cycle, aerosol interrelationships, and other influential factors, Atmos. Chem. Phys., 21, 10499-10526, doi:10.5194/acp-21-10499-2021.
- Edwards, E., et al. (2021), Impact of various air mass types on cloud condensation nuclei concentrations along coastal southeast Florida, Atmos. Environ., 254, 118371, doi:10.1016/j.atmosenv.2021.118371.
- Lorenzo, G. R., et al. (2021), Measurement report: Firework impacts on air quality in Metro Manila, Philippines, during the 2019 New Year revelry, Atmos. Chem. Phys., 21, 6155-6173, doi:10.5194/acp-21-6155-2021.
- Painemal, D., et al. (2021), All Rights Reserved. An Overview of Atmospheric Features Over the Western North Atlantic Ocean and North American East Coast— Part 2: Circulation, Boundary Layer, and Clouds, J. Geophys. Res., 126, e2020JD033423, doi:10.1029/2020JD033423.
- Sorooshian, A., et al. (2020), Atmospheric Research Over the Western North Atlantic Ocean Region and North American East Coast: A Review of Past Work and Challenges Ahead, J. Geophys. Res., 125, e2019JD031626, doi:10.1029/2019JD031626.
Note: Only publications that have been uploaded to the
ESD Publications database are listed here.